Function and Designing of Automatic Observing System for Agro-meteorology
-
摘要: 根据现代农业气象业务需求,提出了可视化、实时性、远程控制的自动农业气象观测系统技术思路、设计原则,并设计了系统的硬件和软件架构及自动化观测的实现方法。该系统具有作物生长、农田气象要素观测及环境监控功能,可实现作物发育期、株高、盖度等的自动观测,还可实现农田主要农业气象灾害实时监测。该文利用三维空间模拟技术初步确定了CCD (charge-coupled device) 传感器的技术指标;提出利用图像判别技术,结合作物生长特征及农业气象指标,实现作物发育期自动判别;利用摄影测量学技术,采用动态跟踪法实现作物株高自动化观测;提出了作物盖度的计算方法和通过研究作物盖度与密度、叶面积指数的关系,解决作物种植密度和叶面积指数自动观测的技术思路。该系统模仿人工观测原理,将图像处理和摄影测量学等技术引入农业气象自动观测中,基本上可以满足农业气象观测的主要任务的实时性、可视化和自动化需求。Abstract: Based on the proposed technique thought and designing principles, the hardware component parts and software function is designed for automatic observing system of agro-meteorology (named AOSA), which is visual and real time and can be controlled remotely according to the requirement of modern agro-meteorological operation. The AOSA is made of the automatic observing system of crop growing and meteorological observing as well as environment monitoring in the field. It includes temperature and humidity sensors for different heights, and solar radiation, photosynthetically active radiation, infrared temperature, rain, wind sensors above crop, and soil humidity and soil temperature sensors for different depths in soil. It can realize automatic observation of crop growing phases, crop height, crop cover, and main agro-meteorological disasters by means of crop meteorological observing and soil moisture data. There are many observing elements in agro-meteorology observation task, but the urgently needed elements and crop types in operational observation are solved in AOSA.The automatic observing techniques are introduced systematically. The technological specification of crop growing sensor is the foundation of AOSA research and development, which (resolutions of CCD sensors and installing height) have influences on accuracy of the crop automatic distinguishing. The results show that CCD sensor height and focus for short stalked plant is not below 3 m and 16 mm respectively and CCD sensor height and focus for tall stalked plant is not below 5 m and 21 mm respectively to observe an area of 5 m2 properly. The automatic distinguishing technique of crop development phases is realized by means of picture differentiating technique, considering crop growing and meteorological index. Crop observation is complicated, so different development phases have different algorithms of automatic observing. Observing method of crop height is developed by photography and dynamic tracking technique. The method of plant cover calculating is given out per hour, and automatic observing of crop density and leaf area will be solved through researching out the relationship between them. The AOSA will preliminarily realize visual, real time and automatic observing of main agro-meteorology observation through image processing and photogrammetry techniques.
-
Key words:
- agro-meteorology;
- automatic observing;
- image processing;
- photogrammetry
-
表 1 CCD传感器不同架设高度及分辨率的可视范围模拟结果 (单位:cm2)
Table 1 Simulating result of visual area of CCD sensor with different heights and resolutions (unit:cm2)
CCD高度/m 焦距/mm 作物高度/m 2.5 1 0.5 0.25 0.1 0.05 3 16 3392 54272 84535 102141 113590 117312 19 2332 37488 58786 70956 78848 81380 21 1880 30369 47561 57597 63987 65988 24 1470 22908 36157 43510 48441 50184 4 16 30369 121794 165837 190163 205261 210672 19 21120 84535 114639 131738 142416 145812 21 17017 68593 92852 106982 115630 118314 24 13000 51750 70664 80808 87156 90146 5 16 84535 216240 273798 304818 325520 331168 19 58786 150025 189766 212100 224640 229862 21 47561 121794 153510 171158 182052 186362 24 36157 92241 116625 129560 137973 140904 表 2 不同拍摄条件下植株成像尺寸
Table 2 The crop pictures size under different taking photo conditions
CCD传感器分辨率 成像像素 3684×2638 80 1824×1368 25 912×684 6 456×342 2 注:以玉米出苗期为例,CCD传感器安装高度为3 m、焦距为16 mm。 -
[1] 中国气象局.农业气象观测规范.北京:气象出版社, 1993. [2] 张霭琛.现代气象观测.北京:北京大学出版社, 2000:193-226. [3] 胡萌琦, 黎家宜, 唐新, 等.基于虚拟仪器技术的农业气象自动观测系统研究.气象研究与应用, 2010, 32(2):57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX201002018.htm [4] 刘志平, 孙涵, 胡萌琦.农业气象自动化观测原理样机的研制.安徽农业科学, 2010, 38(17): 9287-9289. doi: 10.3969/j.issn.0517-6611.2010.17.170 [5] 黎家宜, 胡萌琦, 林宗桂.农业气象自动观测站的建设及管理.气象研究与应用, 2008, 29(4):35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201419151.htm [6] 林墨, 林宗桂, 胡萌琦.一种可变采样率数据采集方法与应用.气象研究与应用, 2008, 29(4):77-79. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200804025.htm [7] 赵爱国, 聂彦将, 侯旭宏, 等.适用于寒旱区十要素无人自动气象站的研制.高原气象, 2003, 22(6): 646-649. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200306020.htm [8] 李雁, 梁海河, 孟昭林, 等.自动气象站运行效能统计.应用气象学报, 2009, 20(4):505-509. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200904017&flag=1 [9] 张枝军.图像处理技术.北京:北京大学出版社, 2006. [10] Gray W J, Richard J. LabVIEW图形编程. 武嘉澍, 陆劲昆, 译. 北京: 北京大学出版社, 2002: 3-6. [11] 中国气象局.生态气象观测规范.北京:气象出版社, 2005. [12] 钟阳和, 石生锦, 黄彬香.农业小气候.北京:气象出版社, 2009. [13] 袁光明, 吴宁强, 郭新, 等.农业气象观测数据自动化处理系统.陕西气象, 2002(4):20-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200204007.htm [14] 中国气象局.地面气象观测规范.北京:气象出版社, 2008. [15] 王小雷, 任学军, 胡敬芳, 等.附加电阻高频电容法土壤水分传感器的研究.河南农业大学学报, 2008, 42(6):689-692. http://cdmd.cnki.com.cn/Article/CDMD-10466-2009255534.htm [16] 冶林茂, 吴志刚, 牛素军, 等.GStar-Ⅰ型电容式土壤水分监测仪设计与应用.气象与环境科学, 2008, 31(3):82-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200803018.htm [17] 王晓云, 郭文利, 奚文.利用"3S"技术进行北京地区土壤水分监测应用技术研究.应用气象学报, 2002, 13(4):422-429. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020457&flag=1 [18] 陈金华, 杨再强, 杨太明, 等.安徽省土壤水分监测预测系统.应用气象学报, 2011, 22(2):249-256. doi: 10.11898/1001-7313.20110214 [19] 刘旭林, 赵文芳, 刘国宏.基于WebGIS的气象信息显示和查询系统.应用气象学报, 2008, 19(1):116-122. doi: 10.11898/1001-7313.20080119