留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风力发电机叶片姿态与雷击概率关系模拟分析

李丹 张义军 吕伟涛

李丹, 张义军, 吕伟涛. 风力发电机叶片姿态与雷击概率关系模拟分析. 应用气象学报, 2013, 24(5): 585-594..
引用本文: 李丹, 张义军, 吕伟涛. 风力发电机叶片姿态与雷击概率关系模拟分析. 应用气象学报, 2013, 24(5): 585-594.
Li Dan, Zhang Yijun, Lü Weitao. Simulation and analysis of the relationship between the turbine blade condition and its lightning strike probability. J Appl Meteor Sci, 2013, 24(5): 585-594.
Citation: Li Dan, Zhang Yijun, Lü Weitao. Simulation and analysis of the relationship between the turbine blade condition and its lightning strike probability. J Appl Meteor Sci, 2013, 24(5): 585-594.

风力发电机叶片姿态与雷击概率关系模拟分析

资助项目: 

国家自然科学基金项目 40875003

公益性行业 (气象) 科研专项 GYHY200706022

国家自然科学基金项目 41075003

详细信息
    通信作者:

    李丹, email: lidan_9732@126.com

Simulation and Analysis of the Relationship Between the Turbine Blade Condition and Its Lightning Strike Probability

  • 摘要: 利用闪电先导二维随机模式对风力发电机遭受雷击情况进行模拟,分析表明:随着下行先导初始位置相对风力发电机水平偏移距离不断增加,雷击风力发电机概率不断减小,偏右500 m时减至4%,且雷击部位多为叶片,叶片姿态不同,雷击特点存在一定差异。当风力发电机1号扇叶转动45°时,扇叶上产生的上行先导长度达221 m,高于平均值10.3%,且各个扇叶间的竞争关系较明显。对风力发电机叶片姿态不同、偏移下行先导不同距离时的雷击概率进行模拟,得出下行梯级先导相对于风力发电机水平偏右300 m以及偏左300 m以内时,扇叶处于15°~45°之间遭受的雷击概率略高,而偏右500 m时其雷击概率明显偏高。由整体随机性分析可知,当风力发电机处于15°~45°时,遭受雷击危害的概率相对较大。
  • 图  1  风力发电机遭受雷击模拟模型

    (a) 二维随机模式的空间结构示意,(b) 风力发电机简化模型

    Fig. 1  The simulation model of lightning striking the wind turbine

    (a) schematic frame diagram of the 2-D random lightning leader model, (b) simplified model of the turbine

    图  2  先导随机发展示意图

    Fig. 2  Schematic of leader random propagation

    图  3  风力发电机模型基本状态划分

    Fig. 3  Basic conditions divided according to the turbine model

    图  4  模拟空间内各点雷击概率

    Fig. 4  P of different possible striking points in the modeling space

    图  5  风力发电机不同状态时上行先导长度变化情况

    Fig. 5  The length of the upward leader initiated from the turbine in different condition

    图  6  上行先导长度随下行先导距离地面高度的变化情况

    Fig. 6  The length of upward leader as the downward leader propagates toward the ground

    图  7  风力发电机扇叶不同角度时叶片雷击概率

    Fig. 7  P of the turbine blade with different condition

    图  8  下行先导偏移不同位置时,各基本状态时对应1号扇叶尖端处电场变化曲线

    (a) 偏右300 m, (b) 偏右500 m

    Fig. 8  Changing curves of the electric field intensity near the tip of the No.1 blade under different condition

    when the downward leader is 300 meters (a) or 500 meters (b) horizontal from the turbine

    表  1  不同先导初始位置时雷击概率 (P) 变化

    Table  1  Different values of P varying with horizontal distance between the initial downward leader and the turbine

    先导水平偏离风机位置 雷击概率/%
    1号扇叶 2号扇叶 3号扇叶 地面 其他 备注 (未击中1号扇叶的情况下,
    1号扇叶上产生上行先导概率)
    正上方 100 0 0 0 0
    偏右200 m 98 0 0 2 0
    偏右300 m 41 2 0 54 3 100
    偏右400 m 26 2 0 72 0 100
    偏右500 m 4 0 0 96 0 62
    下载: 导出CSV

    表  2  扇叶不同角度时产生上行先导长度平均值

    Table  2  Average value of the upward leader in different conditions

    风力发电机转动角度/(°) 上行先导平均长度/m 高出平均值/%
    0 170 -15.2
    15 189 -5.7
    30 212 5.8
    45 221 10.3
    60 210 4.8
    下载: 导出CSV

    表  3  状态不同、偏移距离不同时雷击概率分布

    Table  3  Distribution of P and Ps considering different condition

    风力发电机所处状态 下行梯级先导水平位置
    偏左500 m 偏左300 m 0 m 偏右300 m 偏右500 m
    P/% Ps/% P/% Ps/% P/% Ps/% P/% Ps/% P/% Ps/%
    基本状态1(0°) 5.0 64.2 40.0 95.0 100.0 100.0 41.0 94.9 4.0 65.2
    基本状态2(15°) 3.0 61.9 41.0 96.6 100.0 100.0 42.0 93.1 7.0 54.0
    基本状态3(30°) 4.0 62.5 39.0 93.4 99.0 100.0 43.0 95.2 8.0 57.6
    基本状态4(45°) 3.0 65.0 39.0 95.1 100.0 100.0 46.0 96.3 15.0 68.2
    基本状态5(60°) 4.0 67.0 35.0 95.4 99.0 100.0 38.0 96.8 3.0 64.95
    注:P为雷击概率;Ps为未击中扇叶时,扇叶上产生上行正先导的概率。
    下载: 导出CSV
  • [1] Rodrigues R B, Mendes V M F, Catalao J P S, et al.An investigation over the lightning location system in Portugal for wind turbine protection development.IEEE Transactions on Power Delivery, 2010, 25(2):870-875. doi:  10.1109/TPWRD.2009.2037325
    [2] Rodrigues R B, Mendes V M F, Catalao J P S, et al.Analysis of the thunderstorm activity in Portugal for its application in the lightning protection of wind turbines.IEEE Latin America Transactions, 2009, 7(5):519-526. doi:  10.1109/TLA.2009.5361188
    [3] Sarajcev P.Assessment of Lightning Stroke Incidence to Modern Wind Turbines.2010 International Conference on Telecommunications and Computer Networks (SoftCOM), 2010:97-101. https://www.researchgate.net/profile/Petar_Sarajcev/publication/224190043_Assessment_of_lightning_stroke_incidence_to_modern_wind_turbines/links/0046351adf05355344000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [4] Wang D, Takagi N, Watanabe T, et al.Observed Characteristics of the Lightning Striking on a Windmill and Its Lightning-Protection Tower.Proceedings of 29th International Conference on Lightning Protection (ICLP), 2008.
    [5] Rachidi F, Rubinstein M, Smorgonskiy A.Lightning protection of large wind-turbine blades.Green Energy and Technology, 2012:227-241.
    [6] Yamamoto K, Yanagawa S, Yamabuki K, et al.Analytical surveys of transient and frequency-dependent grounding characteristics of a wind turbine generator system on the basis of field tests.IEEE Transactions on Power Delivery, 2010, 25(4):3035-3043. doi:  10.1109/TPWRD.2010.2043748
    [7] Madsen S F, Larsen F M, Hansen L B, et al.Breakdown Tests of Glass Fibre Reinforced Polymers (GFRP) as Part of Improved Lightning Protection of Wind Turbine Blades.Conference Record of 2004 IEEE International Symposium on Electrical Insulation, 2004:484-491. http://orbit.dtu.dk/files/4171667/Madsen.pdf
    [8] Manikandan P, Rajamani M P E, Subburaj D P, et al.Design and Analysis of Grounding Systems for Wind Turbines Using Finite Element Method.2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), 2011:148-153. https://www.researchgate.net/profile/Venkatkumar_D/publication/251998953_Design_and_analysis_of_grounding_systems_for_wind_turbines_using_Finite_element_method/links/5615e7da08ae983c1b4238df.pdf
    [9] Rodrigues R B, Mendes V M F, Catalao J P S.Direct Lightning Surge Analysis in Wind Turbines Using Electromagnetic Transients Computer Program.International Conference on Computer as a tool (EUROCON), 2011:1-4. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005929181
    [10] Glushakow B.Effective lightning protection for wind turbine generators.IEEE Transactions on Energy Conversion, 2007, 22(1):214-222. doi:  10.1109/TEC.2006.889622
    [11] Rachidi F, Rubinstein M, Montanya J, et al.A review of current issues in lightning protection of new-generation wind-turbine blades.IEEE Transactions on Industrial Electronics, 2008, 55(6):2489-2496. doi:  10.1109/TIE.2007.896443
    [12] Ametani A, Yamamato K.A Study of Transient Magnetic Fields in a Wind turbine Nacelle.Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2010:1201-1204. https://www.researchgate.net/publication/251927747_A_study_of_transient_magnetic_fields_in_a_wind_turbine_nacelle
    [13] Yanagawa S, Natsuno D, Yamamoto K.A Measurement of Transient Grounding Characteristics of a Wind Turbine Generator System and Its Considerations.7th Asia-Pacific International Conference on Lightning (APL), 2011:401-404. https://www.researchgate.net/publication/254013293_A_measurement_of_transient_grounding_characteristics_of_a_wind_turbine_generator_system_and_its_considerations
    [14] Elmghairbi A, Ahmeda M, Harid N.A Technique to Increase the Effective Length of Horizontal Earth Electrodes and Its Application to a Practical Earth Electrode System.7th Asia-Pacific International Conference on Lightning (APL), 2011:690-693.
    [15] Peesapati V, Cotton I, Sorensen T, et al.Lightning protection of wind turbines-a comparison of measured data with required protection levels.Renewable Power Generation, IET, 2011, 5(1):48-57. doi:  10.1049/iet-rpg.2008.0107
    [16] Ahmed M R, Ishii M.Electromagnetic Analysis of Lightning Surge Response of Interconnected Wind Turbine Grounding System.International Symposium on Lightning Protection (XI SIPDA), 2011:226-231. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006088443
    [17] Zoro R, Purwadi A.The Use of Wind Turbine Structure for Lightning Protection System.International Conference on Electrical Engineering and Information (ICEEI), 2011:1-6. https://www.researchgate.net/publication/221013703_The_use_of_wind_turbine_structure_for_lightning_protection_system
    [18] Sakurano H, Hashimoto M, Nakamura K.Observation of Winter Lightning Striking a Wind Power Generation Tower and a Lightning Tower.28th International Conference on Lightning Protection, 2006:1522-1526.
    [19] Nakamura K, Sakurano H.Observation of Winter Lightning Striking a Wind Power Generation Tower (a Lightning Tower) and Its Statistical Analysis.29th International Conference on Lightning Protection, 2008:1-4.
    [20] 洪华芳, 周歧斌, 边晓燕.风力发电机叶片的雷击损伤与雷电保护.华东电力, 2009, 37(10):1778-1781. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDL200910048.htm
    [21] Radicevic B M, Savic M S. Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges.IEEE Transactions on Energy Conversion, 2011, 26(4):1181-1190. doi:  10.1109/TEC.2011.2162240
    [22] Romero D, Montany J, Candela A.Behaviour of the Wind-Turbines under Lightning Strikes Including Nonlinear Grounding System.Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ), 2004.
    [23] Rodrigues R B, Mendes V M F, Catalao J P S.Electromagnetic Transients Due to Lightning Strikes on Wind Turbines:A Case Study.MELECON 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, 2010:1417-1422. https://www.researchgate.net/publication/224142750_Electromagnetic_Transients_due_to_Lightning_Strikes_on_Wind_Turbines_A_Case_Study
    [24] Paolone M, Napolitano F, Borghetti A, et al.Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems.2007 IEEE Lausanne Power Tech, 2007:783-789. http://www.academia.edu/7580095/Models_of_Wind-Turbine_Main-Shaft_Bearings_for_the_Development_of_Specific_Lightning_Protection_Systems
    [25] 王晓辉, 张小青.风电机组塔体的雷电暂态计算模型.系统仿真学报, 2009, 21(16):4998-5001. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200916021.htm
    [26] Peesapati V, Cotton I. Lightning Protection of Wind Turbines-a Comparison of Real Lightning Strike Data and Finite Element Lightning Attachment Analysis.International Conference on Sustainable Power Generation and Supply, 2009:1-8.
    [27] 任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [28] 任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [29] 张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [30] 余晔, 郄秀书, 袁铁.雷暴云下地闪先导通道中的电荷分布.高原气象, 2002, 21(4):375-380. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200204005.htm
    [31] 郑栋, 张义军, 吕伟涛, 等.先导-回击模型与人工触发闪电特征参数计算.中国电机工程学报, 2006, 26(23):151-157. doi:  10.3321/j.issn:0258-8013.2006.23.027
    [32] 李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [33] 李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [34] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [35] 杨耀, 孙杰, 陈徐, 等.利用Matlab研究尖端导体附近的电场特征及其应用.信息通信, 2011(5):7-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201105006.htm
  • 加载中
图(8) / 表(3)
计量
  • 摘要浏览量:  3274
  • HTML全文浏览量:  1066
  • PDF下载量:  1896
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-08
  • 修回日期:  2013-07-11
  • 刊出日期:  2013-10-31

目录

    /

    返回文章
    返回