Characteristics of PM2.5 in Beijing and Surrounding Areas from January to March in 2013
-
摘要: 2013年1—3月北京及周边地区雾、霾高发,气候特征异于常年。利用2013年1—3月北京及周边地区6个地面观测站观测资料,研究PM2.5和黑碳 (BC) 的质量浓度、区域分布特征及气象要素的影响情况。结果表明:北京及周边地区PM2.5污染呈区域性高值、污染局地积累以及由南向北输送的特征。北京上甸子站在雾、霾与清洁期间BC与PM2.5质量浓度的比值分别为7.1%和10.3%,雾、霾期间低于清洁期间;而河北固城站在雾、霾与清洁期间BC与PM2.5质量浓度的比值分别为17.5%和11.9%,雾、霾期间明显高于清洁期间。二者相反的比值特征反映在清洁的下游地区雾、霾过程中二次生成的气溶胶所占比例较污染的上游地区偏高。Abstract: Frequent and serious haze and fog events happen from January to March in 2013 in Beijing and surrounding areas under special climate conditions, which are different from those in last decades. 8 haze and fog events during this period are defined in accordance with the meteorological definition. The observational PM2.5, black carbon (BC) concentration and the meteorological data at 8 stations in Beijing, Tianjin, Hebei and Shanxi are used to analyze the fine particle matter and BC pollution level and regional characteristics. The meteorological-parameter variation characteristic and its possible influence on transportation and dilution of atmosphere pollutants are investigated as well.Extraordinarily high daily average PM2.5 concentrations (e.g., 579 μg·m-3 at Shijiazhuang Station) are found, much higher than former researches. Investigations indicate that even though the diurnal variation of PM2.5 concentration varies from station to station, there is a regional high concentration level of PM2.5 in Beijing and surrounding areas for average, which also has characteristic of local accumulation of air pollutants. Analysis on average surface wind speed and atmospheric vertical stability from NCEP reanalysis data in Beijing and surrounding areas from January to March since 2006 to 2013 are conducted, revealing remarkable feature of low surface wind speed and stable structure in lower part of atmosphere in 2013. During the development of fog and haze events, pollution transportation from south to north are observed. High values in south-west and north-east sectors in PM2.5 concentration wind rose correspond to atmospheric-pollutant transportation channel around Beijing.Apart from PM2.5 concentration, BC variation characteristic and its proportion in PM2.5 at Shangdianzi Global Atmosphere Watch Regional Station (SDZ) of Beijing and Gucheng Station (GCH, a rural representative site) of Hebei are studied to enhance the understanding of distinguishing feature of aerosol pollution and its composition in this region. Sharing the similar escalation trend during haze and fog events at both stations, the BC concentration at SDZ is lower, roughly one third of it at GCH. The ratio of BC and PM2.5 mass concentration is of 7.1% during haze and fog events, and 10.3% during the clean days at SDZ. The ratio of BC and PM2.5 mass concentration during haze and fog events versus clean days are of 17.5% and 11.9% at GCH. The contrast values between haze and fog events versus clean days in different stations indicate a higher secondary aerosol proportion during haze and fog events in the down-wind northern area when compared to that in the polluted up-wind southern area in and around Beijing.
-
表 1 2013年1—3月北京及周边地区8次雾、霾过程能见度和相对湿度的变化
Table 1 Visibility and relative humidity in 8 fog and haze events in Beijing and surrounding areas from January to March in 2013
雾、霾过程 时段 最小能见度/m 最大相对湿度/% 第1次 01-09—14 223 89 第2次 01-19—24 33 90 第3次 01-27—31 262 93 第4次 02-11—17 426 89 第5次 02-21—23 520 88 第6次 02-25—28 401 89 第7次 03-05—10 1076 75 第8次 03-25—27 1952 74 表 2 8次雾、霾过程不同站点PM2.5质量浓度平均值和最大小时平均值 (单位: μg·m-3)
Table 2 The mean and the maximum hourly mean of PM2.5 for 8 fog and haze events at 6 stations (unit: μg·m-3)
雾、霾过程 上甸子站 宝联站 天津站 固城站 石家庄站 太原站 平均值 最大小时平均值 平均值 最大小时平均值 平均值 最大小时平均值 平均值 最大小时平均值 平均值 最大小时平均值 平均值 最大小时平均值 第1次 60 306 192 630 202 494 160 391 434 750 123 273 第2次 60 174 109 444 157 406 262 478 345 579 195 362 第3次 98 303 170 314 157 253 155 332 306 560 125 276 第4次 50 172 111 580 123 568 109 269 190 348 123 304 第5次 55 164 122 457 101 228 101 252 201 334 99 269 第6次 80 349 178 342 235 356 107 194 247 386 113 410 第7次 64 308 142 292 121 357 116 510 75 205 第8次 84 257 141 250 74 219 90 203 79 194 表 3 8次雾、霾过程中上甸子站和固城站BC质量浓度平均值和最大小时平均值 (单位:μg·m-3)
Table 3 The mean and the maximum hourly mean BC for 8 fog and haze events at Shangdianzi and Gucheng stations (unit: μg·m-3)
雾、霾过程 上甸子站 固城站 平均值 最大小时平均值 平均值 最大小时平均值 第1次 7.4 21.8 33.0 63.7 第2次 4.3 11.3 20.4 65.4 第3次 8.8 17.0 16.7 43.1 第4次 2.6 8.0 11.7 40.6 第5次 2.4 6.7 18.2 41.8 第6次 4.7 17.5 21.2 38.3 第7次 5.6 15.2 17.4 54.8 第8次 5.2 9.2 9.0 17.7 表 4 雾、霾过程及其前后清洁期间上甸子站和固城站BC和PM2.5质量浓度平均值及BC与PM2.5质量浓度比值统计分析
Table 4 Statistic analysis of averaged BC, PM2.5 mass concentration and their ratios for fog, haze and clear events at Shangdianzi and Gucheng stations
过程 上甸子站 固城站 BC质量浓度/(μg·m-3) PM2.5质量浓度/(μg·m-3) BC与PM2.5质量浓度比值/% BC与PM2.5质量浓度相关系数 BC质量浓度/(μg·m-3) PM2.5质量浓度/(μg·m-3) BC与PM2.5质量浓度比值/% BC与PM2.5质量浓度相关系数 雾、霾 9.0 139.2 7.1 0.77 24.1 195.7 17.5 0.66 清洁 0.9 9.4 10.3 0.63 3.5 29.9 11.9 0.53 -
[1] Sean T.The influence of pollution on the shortwave albedo of clouds.J Atmos Sci, 1977, 34:1149-1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 [2] Joyce E P, Dong X Q, Yang C.Observational evidence of a change in radiative forcing due to the indirect aerosol effect.Nature, 2004, 427(6971):231-234. doi: 10.1038/nature02234 [3] Arden C P Ⅲ, Majid E, Douglas W D.Fine-particulate air pollution and life expectancy in the United States.New England Journal of Medicine, 2009, 360(4):376-386. doi: 10.1056/NEJMsa0805646 [4] 宋宇, 唐孝炎, 方晨, 等.北京市能见度下降与颗粒物污染的关系.环境科学学报, 2003, 23(4):468-471. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200304010.htm [5] Chang D, Song Y, Liu B.Visibility trends in six megacities in China 1973-2007.Atmos Res, 2009, 94(2):161-167. doi: 10.1016/j.atmosres.2009.05.006 [6] Ma J Z, Xu X B, Zhao C S, et al.A review of atmospheric chemistry research in China:Photochemical smog, haze pollution, and gas-aerosol interactions.Adv Atmos Sci, 2012, 29:1006-1026. doi: 10.1007/s00376-012-1188-7 [7] 胡亚旦, 周自江.中国霾天气的气候特征分析.气象, 2009, 35(7):73-78. doi: 10.7519/j.issn.1000-0526.2009.07.011 [8] 王继志, 徐祥德, 杨元琴.北京城市能见度及雾特征分析.应用气象学报, 2002, 13(增刊Ⅰ):160-169. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1017.htm [9] Ma J Z, Wang W, Chen Y, et al.The IPAC-NC field campaign:A pollution and oxidization pool in the lower atmosphere over Huabei, China.Atmospheric Chemistry and Physics, 2012, 12(9):3883-3908. doi: 10.5194/acp-12-3883-2012 [10] Ma J Z, Chen Y, Wang W, et al.Strong air pollution causes widespread haze-clouds over China.J Geophys Res, 2010, 115, D18024, doi: 10.1029/2009JD013065. [11] 赵普生, 徐晓峰, 孟伟, 等.京津冀区域霾天气特征.中国环境科学, 2012, 32(1):31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201201004.htm [12] 陈朝晖, 程水源, 苏福庆, 等.华北区域大气污染过程中天气型和输送路径分析.环境科学研究, 2008, 21(1):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200801004.htm [13] 颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi: 10.11898/1001-7313.20100301 [14] 赵秀娟, 蒲维维, 孟伟, 等.北京地区秋季雾霾天PM2.5污染与气溶胶光学特征分析.环境科学, 2013, 34(2):416-423. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201302003.htm [15] 边海, 张裕芬, 韩素芹, 等.天津市大气能见度与颗粒物污染的关系.中国环境科学, 2012, 32(3):406-410. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201203004.htm [16] 吴兑, 毕雪岩, 邓雪娇, 等.珠江三角洲大气灰霾导致能见度下降问题研究.气象学报, 2006, 64(4):510-517. doi: 10.11676/qxxb2006.050 [17] Tao M H, Chen L F, Wang Z F, et al.A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations.Atmos Environ, 2014, 82:183-192. doi: 10.1016/j.atmosenv.2013.10.010 [18] 吕效谱, 成海容, 王祖武, 等.中国大范围雾霾期间大气污染特征分析.湖南科技大学学报:自然科学版, 2013, 28(3):104-110. http://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201303020.htm [19] Wang L T, Wei Z, Yang J, et al.The 2013 severe haze over the southern Hebei, China:Model evaluation, source apportionment, and policy implications.Atmospheric Chemistry & Physics Discussions, 2013, 13(11):28395-28451. https://www.researchgate.net/publication/260900948_The_2013_severe_haze_over_southern_Hebei_China_Model_evaluation_source_apportionment_and_policy_implications [20] Lin W L, Xu X B, Ge B Z, et al.Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing.J Geophys Res, 2009, 114, doi: 10.1029/2008jd010339. [21] Zhao B, Wang P, Ma J Z, et al.A high-resolution emission inventory of primary pollutants for the Huabei Region, China.Atmospheric Chemistry and Physics, 2012, 12(1):481-501. doi: 10.5194/acp-12-481-2012 [22] 徐祥德, 周丽, 周秀骥, 等.城市环境大气重污染过程周边源影响域.中国科学:D辑, 2005, 34(10):958-966. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200410009.htm [23] Hans G, Delbert J E.Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction.Journal of the Air & Waste Management Association, 2009, 59(1):101-107. https://www.researchgate.net/publication/24009442_Aerosol_Measurement_The_Use_of_Optical_Light_Scattering_for_the_Determination_of_Particulate_Size_Distribution_and_Particulate_Mass_Including_the_Semi-Volatile_Fraction [24] 吴兑.霾与雾的区别和灰霾天气预警建议.广东气象, 2004, 4(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200404000.htm [25] 吴兑, 吴晓京, 朱小祥.雾和霾.北京:气象出版社, 2009. [26] 中国气象局. 霾的观测和预报等级. QX/T 113—2010. 2010. [27] 陈林, 王莉莉, 吉东生, 等.广州亚运会期间鼎湖山站大气污染特征.应用气象学报, 2013, 24(2):151-161. doi: 10.11898/1001-7313.20130203 [28] 王淑英, 张小玲.北京地区PM10污染的气象特征.应用气象学报, 2002, 13(增刊Ⅰ):177-184. http://www.cnki.com.cn/Article/CJFDTotal-YYQX2002S1019.htm [29] 蒲维维, 赵秀娟, 张小玲.北京地区夏末秋初气象要素对PM2.5污染的影响.应用气象学报, 2011, 22(6):716-723. doi: 10.11898/1001-7313.20110609 [30] John L W.Estimating the Flammable Mass of a Vapor Cloud.Hoboken:John Wiley & Sons, 2010. [31] Zhao P S, Zhang X L, Xu X F, et al.Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China.Atmos Res, 2011, 101(3):711-718. doi: 10.1016/j.atmosres.2011.04.019 [32] Tao M H, Chen L F, Wang Z F, et al.A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations.Atmos Environ, 2014, 82:183-192. doi: 10.1016/j.atmosenv.2013.10.010 [33] Andrew J B, van der Linde K.RMA:Software for Reduced Major Axis Regression.Java Version, 2004. [34] McArdle B H.The structural relationship:Regression in biology.Canadian Journal of Zoology, 1988, 66(11):2329-2339. doi: 10.1139/z88-348 [35] Sun Y L, Zhuang G S, Tang A H, et al.Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing.Environ Sci Technol, 2006, 40(10):3148-3155. [36] 颜鹏, 郇宁, 张养梅, 等.北京乡村地区分粒径气溶胶OC及EC分析.应用气象学报, 2012, 23(3):285-293. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120304&flag=1 [37] 张小曳, 张养梅, 曹国良.北京PM1中的化学组成及其控制对策思考.应用气象学报, 2012, 23(3):257-264. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120301&flag=1 [38] 荆俊山, 张仁健, 陶俊.北京郊区夏季PM2.5和黑碳气溶胶的观测资料分析.气象科学, 2011, 31(4):510-515. http://www.cnki.com.cn/Article/CJFDTotal-QXKX201104018.htm [39] Dan M, Zhuang G S, Li X X, et al.The characteristics of carbonaceous species and their sources in PM2.5 in Beijing.Atmos Environ, 2004, 38(21):3443-3452. doi: 10.1016/j.atmosenv.2004.02.052 [40] 吴兑, 毛节泰, 邓雪娇, 等.珠江三角洲黑碳气溶胶及其辐射特性的观测研究.中国科学:D辑, 2009, 39(11):1542-1553. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911006.htm