留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的数值预报降水偏差订正方法及应用

孙靖 程光光 张小玲

孙靖, 程光光, 张小玲. 一种改进的数值预报降水偏差订正方法及应用. 应用气象学报, 2015, 26(2): 173-184. DOI: 10.11898/1001-7313.20150205..
引用本文: 孙靖, 程光光, 张小玲. 一种改进的数值预报降水偏差订正方法及应用. 应用气象学报, 2015, 26(2): 173-184. DOI: 10.11898/1001-7313.20150205.
Sun Jing, Cheng Guangguang, Zhang Xiaoling. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci, 2015, 26(2): 173-184. DOI:  10.11898/1001-7313.20150205.
Citation: Sun Jing, Cheng Guangguang, Zhang Xiaoling. An improved bias removed method for precipitation prediction and its application. J Appl Meteor Sci, 2015, 26(2): 173-184. DOI:  10.11898/1001-7313.20150205.

一种改进的数值预报降水偏差订正方法及应用

DOI: 10.11898/1001-7313.20150205
资助项目: 

公益性行业 (气象) 科研专项 GYHY201106010

公益性行业 (气象) 科研专项 GYHY201206005

详细信息
    通信作者:

    孙靖, email: sunjinglinger@gmail.com

An Improved Bias Removed Method for Precipitation Prediction and Its Application

  • 摘要: 对传统的消除偏差法进行改进,形成分等级消除偏差法,并使用混合训练期和60 d滑动训练期方案分别对2012年6—8月ECMWF (European Centre for Medium-Range Weather Forecasting) 模式夏季1~5 d的降水预报进行订正试验。为了尽可能符合中国东部夏季降水具有移动性及多种时间尺度变化的特点,混合训练期以预报期前30 d与预报期前一年同日的前后各15 d组成。结果表明:在使用分等级消除偏差法的基础上,相比ECMWF模式降水预报,两种训练期方案的订正结果几乎对各个阈值的ETS评分均有一定提高,特别是对25 mm以上降水预报评分的提高幅度,混合训练期方案的订正结果明显高于60 d滑动训练期方案;在区域性强降水预报的订正中,混合训练期方案优势更为明显。另外,通过分析两种训练期方案的预报偏差发现,分等级订正是此次消除偏差订正试验中提高强降水预报评分的关键,选择合适的训练期可以增加评分提高的幅度。由于上述试验使用的ECMWF模式预报和站点实况均是业务上常用数据,因此,该方法具有一定的业务应用价值。
  • 图  1  2011年4—8月和2012年4—8月逐月平均降水强度分布

    Fig. 1  Monthly mean precipitation intensity from April to August in 2011 and 2012

    图  2  2012年6—8月不同时效ECMWF模式、GBR_60和GBR_h降水预报ETS评分及Bias评分

    Fig. 2  ETS and Bias scores from Jun to Aug in 2012 from ECMWF, GBR_60 and GBR_h

    图  3  2012年6月27日20:00长江中下游24 h累积降水实况、48 h时效的ECMWF模式降水预报、GBR_60和GBR_h的降水分布

    (黑色方框内为研究区域)

    Fig. 3  24-hour observation and 48-hour forecast over the Mid-lower Reaches of the Yangtze at 2000 BT 27 June 2012

    (the black box denotes the target domain)

    图  4  图 3, 但预报时效为120 h

    Fig. 4  The same as in Fig. 3, but for 120-hour forecast

    图  5  48 h时效和120 h时效ECMWF模式、GBR_60及GBR_h研究区域降水预报ETS评分和Bias评分

    Fig. 5  ETS and Bias scores of 48-hour and 120-hour forecasts from ECMWF, GBR_60 and GBR_h

    图  6  48 h时效GBR_60和GBR_h偏差背景场分布

    (黑色方框内为研究区域)

    Fig. 6  Bias error background of GBR_60 and GBR_h for 48-hour forecast

    (the black box denotes the target domian)

    图  7  图 6, 但为120 h预报时效

    Fig. 7  The same as in Fig. 6, but for 120-hour forecast

    表  1  GBR_h和GBR_60降水预报ETS评分相对于ECMWF模式降水预报的提高幅度 (单位:%)

    Table  1  Improvement of ETS of precipitation prediction comparing GBR_h and GBR_60 with ECMWF over China (unit:%)

    方案 48 h时效 120 h时效
    降水量小于25 mm 降水量大于等于25 mm 降水量小于25 mm 降水量大于等于25 mm
    GBR_h 19.5 73.5 14.2 78.2
    GBR_60 19.1 55.9 13.5 67.3
    下载: 导出CSV
  • [1] 王雨, 闫之辉.2004年汛期 (5—9月) 主客观降水预报检验.热带气象学报, 2006, 22(4):331-339. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604003.htm
    [2] 周慧, 崔应杰, 胡江凯, 等.T639模式对2008年长江流域重大灾害性降水天气过程预报性能的检验分析.气象, 2010, 36(9):60-67. doi:  10.7519/j.issn.1000-0526.2010.09.010
    [3] 熊秋芬.GRAPES_Meso模式的降水格点检验和站点检验分析.气象, 2011, 37(2):185-193. doi:  10.7519/j.issn.1000-0526.2011.02.008
    [4] 张亚萍, 程明虎, 夏文梅, 等.天气雷达回波运动场估测及在降水临近预报中的应用.气象学报, 2006, 64(5):631-646. doi:  10.11676/qxxb2006.062
    [5] 胡胜, 罗聪, 黄晓梅, 等.基于雷达外推和中尺度数值模式的定量降水预报的对比分析.气象, 2012, 38(3):274-280. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201203004.htm
    [6] 王建捷, 周斌, 郭肖容.不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响.气象学报, 2005, 63(4):405-417. doi:  10.11676/qxxb2005.041
    [7] 陈炯, 王建捷.边界层参数化方案对降水预报的影响.应用气象学报, 2006, 17(增刊Ⅰ):11-17. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201619071.htm
    [8] 汤剑平, 赵鸣, 苏炳凯.分辨率对区域气候极端事件模拟的影响.气象学报, 2006, 64(4):432-442. doi:  10.11676/qxxb2006.043
    [9] 李莉, 朱跃建.T213降水预报订正系统的建立与研究.应用气象学报, 2006, 17(增刊Ⅰ):130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1018.htm
    [10] 李莉, 李应林, 田华.T213全球集合预报系统误差订正研究.气象, 2011, 37(1):31-38. doi:  10.7519/j.issn.1000-0526.2011.01.004
    [11] 曹晓钟, 闵晶晶, 刘还珠, 等.分类与集成方法在降雨预报中的应用.气象, 2008, 34(10):3-11. doi:  10.7519/j.issn.1000-0526.2008.10.001
    [12] Krishnamurti T N, Kishtawal C M.Improved weather and seasonal climate forecasts from multimodel superensemble.Science, 1999, 285:1548-1550. doi:  10.1126/science.285.5433.1548
    [13] Krishnamurti T N, Kishtawal C M, Shin D W, et al.Improving tropical precipitation forecasts from a multianalysis superensemble.J Climate, 2000, 13:4217-4227. doi:  10.1175/1520-0442(2000)013<4217:ITPFFA>2.0.CO;2
    [14] Cartwright T J, Krishnamurti T N.Warm season mesoscale superensemble precipitation forecasts in the Southeastern United States.Wea Forecasting, 2007, 22:873-886. doi:  10.1175/WAF1023.1
    [15] Krishnamurti T N, Gnanaseelan C, Chakraborty A, et al.Prediction of the diurnal change using a multimodel superensemble.Part Ⅰ:Precipitation.Mon Wea Rev, 2007, 135:3613-3632. doi:  10.1175/MWR3446.1
    [16] Krishnamurti T N, Mishra A K, Chakraborty A, et al.Improving global model precipitation forecasts over India using downscaling and the FSU superensemble.Part Ⅰ:1-5-Day Forecasts.Mon Wea Rev, 2009, 137:2713-2735. doi:  10.1175/2009MWR2568.1
    [17] Krishnamurti T N, Sagadevan A D, Chakraborty A, et al.Improving multimodel weather forecast of monsoon rain over China using FSU superensemble.Adv Atmos Sci, 2009, 26(5):813-839. doi:  10.1007/s00376-009-8162-z
    [18] 智协飞, 季晓东, 张璟, 等.基于TIGGE资料的地面气温和降水的多模式集成预报.大气科学学报, 2013, 36(3):257-266. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201303003.htm
    [19] 赵声蓉.多模式温度集成预报.应用气象学报, 2006, 17(1):52-58. doi:  10.11898/1001-7313.20060109
    [20] Krishnamurti T N, Sajani S, Shin D W, et al.Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products.Mon Wea Rev, 2001, 129:2861-2883. doi:  10.1175/1520-0493(2001)129<2861:RTMMSF>2.0.CO;2
    [21] 王雨, 闫之辉.降水检验方案变化对降水检验评估效果的影响分析.气象, 2007, 33(12):53-61. doi:  10.7519/j.issn.1000-0526.2007.12.008
    [22] Emad H, Witold F K, Grzegorz J C.Estimation of rainfall interstation correlation.J Hydrometeorology, 2001, 2(6):621-629. doi:  10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
    [23] 肖红茹, 王灿伟, 周秋雪, 等.T639、ECMWF细网格模式对2012年5~8月四川盆地降水预报的天气学检验.高原山地气象研究, 2013, 33(1):80-85. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201301015.htm
    [24] 陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [25] 赵平, 周秀骥.近40年我国东部降水持续时间和雨带移动的年代及变化.应用气象学报, 2006, 17(5):548-556. doi:  10.11898/1001-7313.20060512
    [26] 缪锦海, Lau K M.东亚季风降水的年际变化.应用气象学报, 1990, 1(4):377-382. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900456&flag=1
    [27] 缪锦海, Lau K M.东亚夏季风降水中的30-60天低频振荡.大气科学, 1991, 15(5):65-71. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199105007.htm
    [28] 魏凤英.全球海表温度变化与中国夏季降水异常分布.应用气象学报, 1998, 9(增刊Ⅰ):100-108. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.012.htm
    [29] 宋文玲.热带西太平洋对流活动与中国夏季降水.应用气象学报, 2005, 16(增刊Ⅰ):63-69. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1007.htm
    [30] 蔡学湛, 吴滨.青藏高原雪盖异常的环流特征及其与我国夏季降水的关系.应用气象学报, 2005, 16(1):89-95. doi:  10.11898/1001-7313.20050112
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  4498
  • HTML全文浏览量:  1188
  • PDF下载量:  1538
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-07
  • 修回日期:  2015-01-09
  • 刊出日期:  2015-03-31

目录

    /

    返回文章
    返回