留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地闪近地面形态特征的数值模拟

谭涌波 张冬冬 周博文 师正 陈之禄 陈超

谭涌波, 张冬冬, 周博文, 等. 地闪近地面形态特征的数值模拟. 应用气象学报, 2015, 26(2): 211-220. DOI: 10.11898/1001-7313.20150209..
引用本文: 谭涌波, 张冬冬, 周博文, 等. 地闪近地面形态特征的数值模拟. 应用气象学报, 2015, 26(2): 211-220. DOI: 10.11898/1001-7313.20150209.
Tan Yongbo, Zhang Dongdong, Zhou Bowen, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. DOI:  10.11898/1001-7313.20150209.
Citation: Tan Yongbo, Zhang Dongdong, Zhou Bowen, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. DOI:  10.11898/1001-7313.20150209.

地闪近地面形态特征的数值模拟

DOI: 10.11898/1001-7313.20150209
资助项目: 

国家重点基础研究发展计划 2014CB441403

国家自然科学基金项目 41475006

国家自然科学基金项目 41175003

江苏高校优势学科建设工程资助项目 PAPD

详细信息
    通信作者:

    谭涌波, email: ybtan@ustc.edu

A Numerical Study on Characteristics of Cloud-to-ground Lightning Near Surface Configuration

  • 摘要: 该文在已有闪电随机放电参数化方案的基础上,截取近地面区域,保持闪电其他基本参数不变,通过改变闪电的空间形态,对同一背景下的闪电进行多次模拟,研究闪电近地面空间形态的差异对闪电击地点位置、上行先导长度、上行先导触发时下行先导的尖端位置及连接过程形态等参数的影响,并探索闪电参数之间的相关性。结果显示:闪电近地面空间形态会使上行先导长度在77~609 m区间内变化,大部分集中在100~200 m,也会使上行先导触发时下行先导的尖端位置分布在建筑物上空的一个椭球形空间内。同时,闪电近地面空间形态的差异也会使地闪连接形态呈多样性。另外,近地面闪电下行先导长度与上行先导长度有一定的线性相关性,而其他闪电参数相互之间的相关性较弱。这不仅可以加深对闪电空间形态不确定性的理解,同时也对以后的模式建立有一定借鉴意义。
  • 图  1  先导发展模型

    Fig. 1  Model of leader progression

    图  2  模拟域示意图

    Fig. 2  Diagram of simulation region

    图  3  闪电发展形态

    (a) 随机性参数为13,(b) 随机性参数为181,(c) 随机性参数为182

    Fig. 3  Lightning progression forms

    (a) random parameter is 13, (b) random parameter is 181, (c) random parameter is 182

    图  4  闪电击地点位置统计

    Fig. 4  Statistical results of location of stroke points

    图  5  上行先导长度统计

    Fig. 5  Statistical results of upward leader length

    图  6  上行先导触发时下行先导的尖端位置统计

    Fig. 6  Statistical results of the tip location of downward leader when upward leader trigger

    图  7  闪电连接形态

    (a) 随机性参数为5,(b) 随机性参数为31,(c) 随机性参数为37,(d) 随机性参数为7

    Fig. 7  Forms of lightning attachment process

    (a) random parameter is 5, (b) random parameter is 31, (c) random parameter is 37, (d) random parameter is 7

    图  8  下行先导长度与闪击距离线性拟合

    Fig. 8  Fitting between length of downward leader and striking distance

    图  9  下行先导长度与上行先导长度线性拟合

    Fig. 9  Fitting between length of downward leader and length of upward leader

  • [1] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [2] 马明, 吕伟涛, 张义军, 等.1997—2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.11898/1001-7313.20080402
    [3] Mansell E R, MacGorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model.Journal of Geophysical Research:Atmospheres (1984-2012), 2002, 107(D9):ACL 2-1-ACL 2-12. doi:  10.1029/2000JD000244/full
    [4] Hartono Z, Robiah I, Darveniza M.A Database of Lightning Damage Caused by Bypasses of Air Terminals on Buildings in Kuala Lumpur, Malaysia.VI International Symposium on Lightning Protection.Santos, Brazil, 2001:211-216. https://www.researchgate.net/profile/Zainalabidin_Hartono/publication/45491914_A_database_of_lightning_damage_caused_by_bypasses_of_air_terminals_on_buildings_in_Kuala_Lumpur_Malaysia/links/5488374f0cf268d28f07f912.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [5] Hartono Z, Robiah I.A Method of Ldentifying the Lightning Strike Location on a Structure.International Conference on Electromagnetic Compatibility.Kuala Lumpur, Malaysia, 1995:112-117.
    [6] Hartono Z, Robiah I.The Collection Surface Concept as a Reliable Method for Predicting the Lightning Strike Location.25th International Conference on Lightning Protection.Rhodes, Greece, 2000:328-333. https://www.researchgate.net/publication/283692564_The_collection_surface_concept_as_a_reliable_method_for_predicting_the_lightning_strike_location
    [7] Lu W T, Zhang Y, Chen L W, et al.Attachment Processes of Two Natural Downward Lightning Flashes Striking on High Structures.30th International Conference on Lightning Protection, 2010. https://www.researchgate.net/publication/282353256_Lightning_Attachment_Processes_of_Three_Natural_Lightning_Discharges
    [8] Lu W T, Chen L W, Ma Y, et al.Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535. doi:  10.1002/2013GL058060
    [9] Warner T A.Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders.30th International Conference on Lightning Protection, 2010. https://www.researchgate.net/publication/261357154_Upward_leader_development_from_tall_towers_in_response_to_downward_stepped_leaders
    [10] Horvath T.Computation of Lightning Protection.London:Research Studies Press, 1991:243-261.
    [11] Uman M A, Rakov V A.A Critical Review of Nonconventional Approaches to Lightning Protection.American Meteorological Society, 2002:1809-1820. https://www.researchgate.net/publication/3171104_Lightning_protection_methods_An_update_and_a_discredited_system_vindicated
    [12] Xu Yazhong, Chen Mingli.An Improved 3-D Self-consistent Stochastic Stepped Leader Model.International Conference on Lightning Protection, 2012:1-5. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006110217
    [13] Vargas M, Torres H. On the development of a lightning leader model for tortuous or branched channels-PartⅠ:Model description.Journal of Electrostatics, 2008, 66:482-488. doi:  10.1016/j.elstat.2008.04.012
    [14] Vargas Mauricio.Novel Integral Model of the Lightning Discharge Channel and Its Attachment to Grounded Structures.Faculty of Engineering, National University of Colombia, 2006.
    [15] 任晓毓, 张义军, 吕伟涛, 等, 闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [16] 任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [17] 李丹, 张义军, 吕伟涛.风力发电机叶片姿态与雷击概率关系模拟分析.应用气象学报, 2013, 24(5):585-594. doi:  10.11898/1001-7313.20130508
    [18] 李丹. 闪电先导三维自持发展模式及应用. 北京: 中国气象科学研究院, 2013.
    [19] Les Renardieres Group.Positive discharges in long air gaps at Les Renardieres-1975 results and conclusions.Electra, 1977, 53:31-153. http://industry.wanfangdata.com.cn/dl/Detail/ExternalResource?id=gdyjs201103003%5e3
    [20] Les Renardieres Group.Negative discharges in long air gaps at Les Renardieres-1978 results.Electra, 1981, 74:67-216. http://iopscience.iop.org/book/978-0-7503-1236-3/chapter/bk978-0-7503-1236-3ch4
    [21] Dellera L, Garbagnati E.Lightning stroke simulation by means of the leader progression model.I.Description of the model and evaluation of exposure of free-standing structures.IEEE Trans Power Delivery, 1990, 5(4):2009-2022. doi:  10.1109/61.103696
    [22] Rizk F A M.Modeling of lightning incidence to tall structures.IEEE Trans Power Delivery, 1994, 9(1):172-193. doi:  10.1109/61.277690
    [23] Marley B, Vernon C.A simplified physical model to determine the lightning upward connecting leader inception.IEEE Transactions on Power Delivery, 2006, 21(2):897-908. doi:  10.1109/TPWRD.2005.859290
    [24] 谭涌波, 师正, 王宁宁, 等.随机性与电环境特征对地闪击地点影响的数值模拟.地球物理学报, 2012, 55(11):3534-3541. doi:  10.6038/j.issn.0001-5733.2012.11.003
    [25] Tan Y B, Tao S C.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning.Geophys Res Lett, 2006, 33(1):L09809. doi:  10.1029/2005GL025523/full
    [26] 谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分枝结构的数值模拟.中国科学D辑:地球科学, 2006, 36(5):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605010.htm
    [27] Eriksson A.The Lightning Ground Flash-An Engineering Study.Faculty of Engineering, University of Natal, Pretoria, South Africa, 1979.
    [28] 郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.11898/1001-7313.20130207
    [29] 谭涌波, 张冬冬, 郭秀峰, 等.轴对称建筑物形状对电场畸变影响的数值模拟.电波科学学报, 2013, doi: 10.13443/j.cjors.2013110701.
    [30] 高彦. 闪电连接过程中先导三维发展特征的分析. 北京: 中国气象科学研究院, 2014.
    [31] Idone V P.Length bounds for connecting discharges in triggered lightning.J Geophys Res, 1990, 95:20409-20416. doi:  10.1029/JD095iD12p20409
    [32] Orville R E, Idone V P.Lightning leader characteristics in the thunderstorm research international program.J Geophys Res, 1982, 87:11177-11192. doi:  10.1029/JC087iC13p11177
    [33] Lu W T, Chen L W, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res, 2012, 117, D19211. https://www.researchgate.net/profile/Weitao_Lu2/publication/258662982_Characteristics_of_unconnected_upward_leaders_initiated_from_tall_structures_observed_in_Guangzhou/links/53eef3780cf23733e812c297.pdf
    [34] Yokoyama S, Miyake K, Suzuki T, et al.Winter lightning on Japan Sea coast-development of measuring system on progressing feature of lightning discharge.IEEE Transactions on Power Delivery, 1990, 5:1418-1425. doi:  10.1109/61.57984
    [35] 张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [36] Petrov N I, Waters R T.Determination of the striking distance of lightning to earthed structures.Mathematical and Physical Sciences, 1995, 450:589-601. doi:  10.1098/rspa.1995.0102
    [37] Christian B. 丁海芳, 译. 雷电现象与防护. 中国雷电与防护, 2004(1): 1-9.
  • 加载中
图(9)
计量
  • 摘要浏览量:  2766
  • HTML全文浏览量:  1228
  • PDF下载量:  1028
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-11
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-03-31

目录

    /

    返回文章
    返回