留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东亚夏季风次季节变化研究进展

祝从文 刘伯奇 左志燕 袁乃明 刘舸

祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展. 应用气象学报, 2019, 30(4): 401-415. DOI: 10.11898/1001-7313.20190402..
引用本文: 祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展. 应用气象学报, 2019, 30(4): 401-415. DOI: 10.11898/1001-7313.20190402.
Zhu Congwen, Liu Boqi, Zuo Zhiyan, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. DOI:  10.11898/1001-7313.20190402.
Citation: Zhu Congwen, Liu Boqi, Zuo Zhiyan, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. DOI:  10.11898/1001-7313.20190402.

东亚夏季风次季节变化研究进展

DOI: 10.11898/1001-7313.20190402
资助项目: 

国家自然科学基金面上项目 41775052

中国气象科学研究院科技发展基金 2018KJ030

中国气象科学研究院基本科研业务费项目 2018Z006

国家自然科学基金重点项目 41830969

详细信息
    通信作者:

    祝从文, 邮箱:zhucw@cma.gov.cn

Recent Advances on Sub-seasonal Variability of East Asian Summer Monsoon

  • 摘要: 东亚夏季风次季节(10~90 d)变化是中国夏季持续性强降水、高温热浪等高影响天气事件的重要环流载体,处于天气预报上限和气候季节预测下限之间的预报过渡区。研究表明:东亚夏季风次季节变化是东亚夏季风的固有物理特征,它和季节进程之间的时间锁相关系是东亚夏季风次季节变化潜在可预报性的重要来源。东亚夏季风次季节变化与Madden-Julian振荡(MJO)存在显著差异,试图通过MJO来预测东亚夏季风次季节变化的不确定性较大。东亚夏季风次季节预测的另一重要来源是下垫面外强迫,包括欧亚大陆春季积雪、中国东部春季土壤湿度和厄尔尼诺-南方涛动(ENSO)事件。此外,去趋势偏-交叉相关分析统计方法能够分析东亚夏季风多因子和多时间尺度问题。目前,亟需解决的科学问题包括:东亚夏季风次季节模态的客观定量描述、造成东亚夏季风次季节模态年际变化的关键物理过程、不同外强迫因子对东亚夏季风次季节模态的共同影响。
  • 图  1  气候平均南海夏季风爆发进程(a)第27候360 K等熵位涡(阴影,单位:PVU)和风场(矢量,单位:m·s-1),(b)第29候对流层上部非绝热加热(阴影,单位:K·d-1)和气温(等值线,单位:K),(c)第27候沿110°~120°E平均的非绝热加热(阴影,单位:K·d-1)、正位涡平流(等值线,单位:10-5 PVU·s-1)和局地经圈环流(矢量,单位:m·s-1,红色箭头表示上升运动),(d)第29候沿110°~120°E平均的非绝热加热(阴影,单位:K·d-1)、正位涡平流(等值线,单位:10-5 PVU·s-1)和局地经圈环流(矢量,单位:m·s-1,红色箭头表示上升运动),(e)第27候OLR(单位:W·m-2)水平分布,(f)第29候OLR(单位:W·m-2)水平分布

    Fig. 1  Climatological onset process of South China Sea summer monsoon (a)360 K isentropic potential vorticity(the shaded, unit:PVU) and winds(vectors, unit:m·s-1) in Pentad 27, (b)upper-tropospheric diabatic heating(the shaded, unit:K·d-1) and air temperature(contours, unit:K) in Pentad 29, (c)110°-120°E averaged latitude-pressure cross section of diabatic heating(the shaded, unit:K·d-1), positive PV advection(contours, unit:10-5 PVU·s-1) and local meridional circulation (vectors, unit:m·s-1, upper-level ascending is represented by bold arrows) in Pentad 27, (d)110°-120°E averaged latitude-pressure cross section of diabatic heating(the shaded, unit:K·d-1), positive PV advection(contours, unit:10-5 PVU·s-1) and local meridional circulation (vectors, unit:m·s-1, upper-level ascending is represented by bold arrows) in Pentad 29, (e)the horizontal distribution of OLR(unit:W·m-2) in Pentad 27, (f)the horizontal distribution of OLR(unit:W·m-2) in Pentad 29

    图  2  东亚夏季风气候次季节(40~80 d)主模态的空间分布特征(填色表示降水,矢量表示风场) (a)第1模态回归的降水场和850 hPa风场,(b)第2模态回归的降水场和850 hPa风场,(c)第1模态回归的200 hPa风场,(d)第2模态回归的200 hPa风场

    Fig. 2  Spatial distribution of the climatological sub-seasonal(40-80 d) modes of the EASM (the shaded denotes rainfall, the vector denotes wind) (a)the rainfall and 850 hPa wind field regressed against the first dominant mode, (b)the rainfall and 850 hPa wind field regressed against the second dominant mode, (c)200 hPa wind field regressed against the first dominant mode, (d)200 hPa wind field regressed against the second dominant mode

    图  3  中国东部春季土壤湿度异常对夏季降水的影响[68] (a)土壤湿度3月加湿试验减去控制试验的夏季降水率差值(单位:mm·d-1),(b)土壤湿度3月减湿试验减去控制试验的夏季降水率差值(单位:mm·d-1)

    Fig. 3  Influences of spring soil moisture on the summer rainfall over East China(from Reference [68]) (anomalies are defined by results of sensitivity-minus-control runs) (a)rainfall anomalies(unit:mm·d-1) in sensitivity experiments forced by the wetter soil moisture in March, (b)rainfall anomalies(unit:mm·d-1) in sensitivity experiments forced by the drier soil moisture in March

    图  4  欧亚大陆春季积雪对我国降水异常的影响[69](阴影区表示达到0.05显著性水平) (a)CFSR 3月雪水当量回归的台站观测的夏季降水,(b)CFSR 4月雪水当量回归的台站观测的夏季降水,(c)CFSR 5月雪水当量回归的台站观测的夏季降水,(d)CFSv2 3月初始值回报的夏季降水回归的回报时间为零的雪水当量,(e)CFSv2 4月初始值回报的夏季降水回归的回报时间为零的雪水当量,(f)CFSv2 5月初始值回报的夏季降水回归的回报时间为零的雪水当量

    Fig. 4  Effects of spring snow over the Eurasian continent on the rainfall anomaly in China(from Reference [69]) (the shaded denotes passing the test of 0.05 level) (a)in-situ rainfall in JJA regressed against the snow water equivalent during Mar in CFSR, (b)in-situ rainfall in JJA regressed against the snow water equivalent during Apr in CFSR, (c)in-situ rainfall in JJA regressed against the snow water equivalent during May in CFSR, (d)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from Mar in CFSv2, (e)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from Apr in CFSv2, (f)snow water equivalent in zero leading month regressed against the predicted JJA rainfall starting from May in CFSv2

    图  5  不同年代影响南海夏季风爆发时间的海温异常(a)1980—1993年的4月海温关键区,(b)1994—2014年的4月海温关键区,(c)1980—1993年各区域海温异常的季节变化,(d)1994—2014年各区域海温异常的季节变化

    Fig. 5  Distinct SSTA affecting the SCSSM onset time in different periods (a)horizontal distribution of SSTAs in Apr affecting the onset time of South China Sea summer monsoon during 1980-1993, (b)horizontal distribution of SSTAs in Apr affecting the onset time of South China Sea summer monsoon during 1994-2014, (c)the seasonal evolution of SSTAs in key regions during 1980-1993, (d)the seasonal evolution of SSTAs in key regions during 1994-2014

    图  6  5月南亚高压年际变化的两种主模态[74] (单位:gpm,黑色粗实线表示表示14270 gpm等高线,灰色阴影表示气候平均位势高度大于14270 gpm的区域,黑色虚线表示气候平均高压脊线,红色和蓝色虚线分别表示强度模态偏强和偏弱时的高压脊线位置) (a)南亚高压强度模态高指数年150 hPa位势高度合成场,(b)南亚高压强度模态低指数年150 hPa位势高度合成场,(c)南亚高压经向位置模态高指数年150 hPa位势高度合成场,(d)南亚高压经向位置模态低指数年150 hPa位势高度合成场

    Fig. 6  Two interannual dominant modes of the South Asian High(SAH) in May(from Reference [74])(the bold solid contour denotes 14270 gpm geopotential height, the shaded denotes climatological geopotential height greater than 14270 gpm, the black dashed line denotes climatological SAH ridgeline, the red dashed line denotes the ridgeline of SAH with the strong SAH meridional position mode, the blue dashed line denotes the ridgeline of SAH with the strong SAH meridional position mode) (a)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the strong SAH intensity mode, (b)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the weak SAH intensity mode, (c)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the strong SAH meridional position mode, (d)composites of 150 hPa geopotential height and ridgeline of the SAH in the years with the weak SAH meridional position mode

    图  7  1983年和2016年盛夏(7月、8月平均)西太平洋副高异常的对比[75] (a)1983年盛夏高空200 hPa波活动通量(矢量, 单位:m2·s-2,)和相对涡度(等值线,单位:10-5·s-1),(b)1983年盛夏高低空速度势(等值线,单位:106 m2·s-2)和辐散风(矢量,单位:m·s-1)差值(200 hPa减去850 hPa), (c)1983年盛夏海温异常(阴影)及850 hPa流函数(等值线,单位:106 m2·s-2),(d)2016年盛夏高空200 hPa波活动通量(矢量,单位:m2·s-2)和相对涡度(等值线,单位:10-5·s-1),(e)2016年盛夏高低空速度势(等值线,单位:106 m2·s-2)和辐散风(矢量,单位:m·s-1)差值(200 hPa减去850 hPa);(f)2016年盛夏海温异常(阴影)及850 hPa流函数(等值线,单位:106 m2·s-2)

    Fig. 7  Comparison of the western Pacific subtropical high between deep summer(Jul-Aug) of 1983 and 2016(from Reference [75]) (a)wave activity flux(the vector, unit:m2·s-2) and relative vorticity (the contour, unit:10-5 s-1) at 200 hPa in deep summer of 1983, (b)vertical difference between 200 hPa and 850 hPa velocity potential (the contour, unit:106 m2·s-2) and divergent winds(the vector, unit:m·s-1) in deep summer of 1983, (c)SSTA(the shaded, unit:K) and 850 hPa stream function(the contour, unit:106 m2·s-2) in deep summer of 1983, (d)wave activity flux(the vector, unit:m2·s-2) and relative vorticity (the contour, unit:10-5·s-1) at 200 hPa in deep summer of 2016, (e)vertical difference between 200 hPa and 850 hPa velocity potential (the contour, unit:106 m2·s-2) and divergent winds(the vector, unit:m·s-1) in deep summer of 2016, (f)SSTA(the shaded, unit:K) and 850 hPa stream function(the contour, unit:106 m2·s-2) in deep summer of 2016

    图  8  1981—2010年4—10月30年MJO指数逐候中位数时间演变(a)强度,(b)位相,(c)RMM1和RMM2

    Fig. 8  Climatological means of MJO index from Apr to Oct during 1981-2010 (a)intensity, (b)phase, (c)RMM1 and RMM2

  • [1] Chen L X, Zhu C W, Wang W, et al.Analysis of the characteristics of 30-60 day low-frequency oscillation over Asia during 1998 SCSMEX.Adv Atmos Sci, 2001, 18:623-638. doi:  10.1007/s00376-001-0050-0
    [2] Zhu C W, Nakazawa T, Li J P, et al.The 30-60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998.Geophys Res Lett, 2003, 30, 1952, DOI: 10.1029/2003GL017817.
    [3] Mao J Y, Chan J C L.Intraseasonal variability of the South China Sea summer monsoon.J Climate, 2005, 18(13):2388-2402. doi:  10.1175/JCLI3395.1
    [4] Morss R E, Demuth J L, Lazo J K.Communicating uncertainty in weather forecasts:A survey of the US public.Wea Forecasting, 2008, 23(5):974-991. doi:  10.1175/2008WAF2007088.1
    [5] Vitart F, Robertson A W, Anderson D L T.Subseasonal to Seasonal Prediction Project, 2012:Bridging the gap between weather and climate.WMO Bulletin, 2012, 61(2):23-28. https://public.wmo.int/en/resources/bulletin/subseasonal-seasonal-prediction-project-bridging-gap-between-weather-and-climate
    [6] 竺可桢.东南季风与中国之雨量.地理学报, 1934, 1:1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB193401000.htm
    [7] 涂长望, 黄仕松.夏季风进退.气象杂志, 1944, 18:1-20. http://d.old.wanfangdata.com.cn/Periodical/gyqx199903016
    [8] 陶诗言, 陈隆勋.夏季亚洲大陆上空大气环流的结构.气象学报, 1957, 2(3):214-215. http://cdmd.cnki.com.cn/Article/CDMD-80058-2006189546.htm
    [9] 叶笃正, 陶诗言, 李麦村.在六月和十月大气环流的突变现象.气象学报, 1958, 29:249-263. http://www.cnki.com.cn/Article/CJFDTotal-QXXB195804004.htm
    [10] 高由禧, 徐淑英.东亚季风的若干问题.北京:科学出版社, 1962.
    [11] 陶诗言, 朱福康.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系.气象学报, 1964, 9(4):3-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004483565
    [12] 魏维, 张人禾, 温敏.南亚高压的南北偏移与我国夏季降水的关系.应用气象学报, 2012, 23(6):650-659. doi:  10.3969/j.issn.1001-7313.2012.06.002
    [13] Lau K M, Li M T.The monsoon of East Asia and its global associations:A survey.Bull Amer Meteor Soc, 1984, 65:114-125. doi:  10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2
    [14] 郭品文, 宋超辉.南亚和东亚热带夏季风分界域变化.应用气象学报, 2014, 25(5):527-537. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140502&flag=1
    [15] Tao S Y, Chen L X.A Review of Recent Research on the East Asian Summer Monsoon in China//Chang C P, Krishramuti T N.Monsoon Meteorology.Oxford: Oxford University Press, 1987: 60-92.
    [16] Lau K M, Yang G J, Shen S H.Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia.Mon Wea Rev, 1988, 116(1):18-37. doi:  10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2
    [17] 贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术发展.应用气象学报, 2013, 24(6):641-655. doi:  10.3969/j.issn.1001-7313.2013.06.001
    [18] He J H, Zhao P, Zhu C W, et al.Discussion of some problems as to the East Asian subtropical monsoon.Acta Meteor Sinica, 2008, 22:419-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e200804003
    [19] Zhu C W, Zhou X J, Zhao P, et al.Onset of East Asian subtropical summer monsoon and rainy season in China.Sci China(Ser D), 2011, 54:1845-1853. doi:  10.1007/s11430-011-4284-0
    [20] He J H, Liu B Q.The East Asian subtropical summer monsoon:Recent progress.J Meteor Res, 2016, 30(2):135-155. doi:  10.1007/s13351-016-5222-z
    [21] Duan A M, Wu G X, Liu Y M, et al.Weather and climate effects of the Tibetan Plateau.Adv Atmos Sci, 2012, 29(5):978-992. doi:  10.1007/s00376-012-1220-y
    [22] 吴国雄, 何编, 刘屹岷, 等.青藏高原和亚洲夏季风动力学研究的新进展.大气科学, 2016, 40(1):22-32. http://d.old.wanfangdata.com.cn/Periodical/daqikx201601003
    [23] Zhang R H, Sumi A, Kimoto M.Impact of El Niño on the East Asian monsoon:A diagnostic study of the 86/87 and 91/92 events.J Meteor Soc Japan, 1996, 74:49-62. doi:  10.2151/jmsj1965.74.1_49
    [24] Wang B, Wu R G, Fu X H.Pacific-East Asian teleconnection:How does ENSO affect East Asian climate?J Climate, 2000, 13:1517-1536. doi:  10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [25] Li T, Wang B.A review on the western North Pacific monsoon:Synoptic-to-interannual variabilities.Terr Atmos Oceanic Sci, 2005, 16:285-314. doi:  10.3319/TAO.2005.16.2.285(A)
    [26] Xie S P, Kosaka Y, Du Y, et al.Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer:A review.Adv Atmos Sci, 2016, 33(4):411-432. doi:  10.1007/s00376-015-5192-6
    [27] Wu R G.Relationship between Indian and East Asian summer rainfall variations.Adv Atmos Sci, 2017, 34(1):4-15. doi:  10.1007/s00376-016-6216-6
    [28] Li C F, Chen W, Hong X W, et al.Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?-Role of midlatitude circulation in August.Adv Atmos Sci, 2017, 34(11):1290-1300. doi:  10.1007/s00376-017-7003-8
    [29] Jiang W P, Huang G, Hu K M, et al.Diverse Relationship between ENSO and the Northwest Pacific Summer Climate among CMIP5 Models:Dependence on the ENSO Decay Pace.J Climate, 2017, 30:109-127. doi:  10.1175/JCLI-D-16-0365.1
    [30] 陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究.应用气象学报, 2013, 24(5):521-532. doi:  10.3969/j.issn.1001-7313.2013.05.002
    [31] Enomoto T, Hoskins B J, Matsuda Y.The formation mechanism of the Bonin high in August.Q J Roy Meteor Soc, 2003, 129:157-178. doi:  10.1256/qj.01.211
    [32] 晏红明, 王灵, 李蕊.1-3月欧亚大陆热力变化及其与我国降水的关系.应用气象学报, 2016, 27(2):209-219. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160209&flag=1
    [33] Lu R Y.Associations among the components of the East Asian summer monsoon system in the meridional direction.J Meteor Soc Japan, 2004, 82:155-165. doi:  10.2151/jmsj.82.155
    [34] Ye H, Lu R Y.Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in Eastern China since the late 1970s.J Climate, 2011, 24:2271-2284. doi:  10.1175/2010JCLI3747.1
    [35] 李建平, 任荣彩, 齐义泉, 等.亚洲区域海-陆-气相互作用对全球和亚洲气候变化的作用研究进展.大气科学, 2013, 37(2):518-538. http://www.cnki.com.cn/Article/CJFDTotal-DQXK201302024.htm
    [36] Murakami T, Nakazawa T, He J.On the 40-50 day oscillations during the 1979 northern hemisphere summer.Ⅰ:Phase propagation.J Meteor Soc Japan, 1984, 62:440-468. doi:  10.2151/jmsj1965.62.3_440
    [37] Lau K M, Chan P H.The 40-50 day oscillation and the El Niño/Southern Oscillation:A new perspective.Bull Amer Meteor Soc, 1986, 67(5):533. doi:  10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2
    [38] Wang B, Xu X.Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation.J Climate, 1997, 10:1071-1085. doi:  10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2
    [39] Song Z H, Zhu C W, Su J Z, et al.Coupling modes of climatological intraseasonal oscillation in the East Asian summer monsoon.J Climate, 2016, 29:6263-6382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f2cae9ccd39200687d248a07bb7fbb9
    [40] Lian Y, Shen B, Li S, et al.Mechanisms for the formation of northeast China cold vortex and its activities and impacts:An overview.J Meteor Res, 2016, 30(6):881-896. doi:  10.1007/s13351-016-6003-4
    [41] Bueh C L, Fu X Y, Xie Z W.Large scale circulation features typical of wintertime extensive and persistent low temperature events in China.Atmos Oceanic Sci Lett, 2011, 4:235-241. doi:  10.1080/16742834.2011.11446935
    [42] 布和朝鲁, 谢作威.东北冷涡环流及其动力学特征.气象科技进展, 2013, 3(3):34-39. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201303008
    [43] Mao J Y, Chan J C L, Wu G.Interannual variations of early summer monsoon rainfall over south China under different PDO backgrounds.Int J Climatol, 2011, 31(6):847-862. doi:  10.1002/joc.v31.6
    [44] Yang J, Bao Q, Gong D Y, et al.Distinct quasi-biweekly variations of the subtropical East Asian monsoon during early and late summers.Climate Dyn, 2014, 42:1469-1486. doi:  10.1007/s00382-013-1728-6
    [45] Zhang C D.Madden-Julian Oscillation.Rev Geophys, 2005, 43, RG2003, DOI: 10.1029/2004RG000158.
    [46] Lee J Y, Wang B, Wheeler M C, et al.Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region.Climate Dyn, 2013, 40(1-2):493-509. doi:  10.1007/s00382-012-1544-4
    [47] Li T.Recent advance in understanding the dynamics of the Madden-Julian oscillation.J Meteor Res, 2014, 28(1):1-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201401003
    [48] Blackmon M L, Lee Y H, Wallace J M.Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales.J Atmos Sci, 1984, 41(6):961-980. doi:  10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2
    [49] Yang J, Wang B, Wang B, et al.Biweekly and 21-30-Day variations of the subtropical summer monsoon rainfall over the Lower Reach of the Yangtze River Basin.J Climate, 2010, 23:1146-1159. doi:  10.1175/2009JCLI3005.1
    [50] Hu W T, Duan A M, Li Y, et al.The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train.J Climate, 2016, 29:7215-7230. doi:  10.1175/JCLI-D-15-0620.1
    [51] Lau K M, Kim K M.The 2010 Pakistan flood and Russian heat wave:Teleconnection of hydrometeorological extremes.J Hydrometeorol, 2012, 13(1):392-403. doi:  10.1175/JHM-D-11-016.1
    [52] Yang J, Bao Q, Wang B, et al.Characterizing two types of transient intraseasonal oscillations in the eastern Tibetan Plateau summer rainfall.Climate Dyn, 2017, 48(5-6):1749-1768. doi:  10.1007/s00382-016-3170-z
    [53] Zhang C, Gottschalck J, Maloney E D, et al.Cracking the MJO nut.Geophys Res Lett, 2013, 40:1223-1230, DOI: 10.1002/grl.50244.
    [54] Li S, Robertson A W.Evaluation of sub-monthly forecast skill from global ensemble prediction systems.Mon Wea Rev, 2015, 143(7):2871-2889. doi:  10.1175/MWR-D-14-00277.1
    [55] Koster R D, Guo Z C, Dirmeyer P A, et al.The second phase of the global land-atmosphere coupling experiment:Soil moisture contributions to subseasonal forecast skill.J Hydrometeorol, 2010, DOI: 10.1175/2011JHM1365.1.
    [56] Yang S, Kumar A, Wang W, et al.Snow-albedo feedback and seasonal climate variability over North America.J Climate, 2001, 14:4245-4248. doi:  10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2
    [57] Deser C, Tomas R A, Peng S.The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies.J Climate, 2007, 20:4751-4767. doi:  10.1175/JCLI4278.1
    [58] Baldwin M P, Dunkerton T J.Stratospheric harbingers of anomalous weather regimes.Science, 2001, 244:581-584. doi:  10.1126-science.1063315/
    [59] Li T, Wang B, Wu B, et al.Theories on formation of an anomalous anticyclone in western North Pacific during El Niño:A review.J Meteor Res, 2017, 31(6):987-1006. doi:  10.1007/s13351-017-7147-6
    [60] Su Q, Lu R Y, Li C F.Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August.Adv Atmos Sci, 2014, 31(2):273-282. doi:  10.1007/s00376-013-3051-x
    [61] Wang B, Li J, He Q.Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957-2016).Adv Atmos Sci, 2017, 34(10):1235-1248. doi:  10.1007/s00376-017-7016-3
    [62] 任宏利, 吴捷, 赵崇博, 等. MJO预报研究进展.应用气象学报, 2015, 26(6):658-668. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150602&flag=1
    [63] 贺铮, 徐邦琪, 高迎侠.BCC S2S模式对亚洲夏季风准双周振荡预报评估.应用气象学报, 2018, 29(4):436-448. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180405&flag=1
    [64] 陈官军, 魏凤英, 姚文清, 等.基于南海夏季风季节内振荡的降水延伸预报试验.应用气象学报, 2016, 27(3):273-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160302&flag=1
    [65] Liu B Q, Zhu C W.A possible precursor of the South China Sea summer monsoon onset:Effect of the South Asian High.Geophys Res Lett, 2016, 43, DOI: 10.1002/2016GL071083.
    [66] Liu G, Wu R G, Wang H M.Contribution of intraseasonal oscillation to long-duration summer precipitation events over Southern China.Atmos Oceanic Sci Lett, 2017, 10(1):82-88. doi:  10.1080/16742834.2017.1233799
    [67] Liu L, Zhang R H, Zuo Z Y.Effect of spring precipitation on summer precipitation in Eastern China:Role of soil moisture.J Climate, 2017, 30:9183-9194. doi:  10.1175/JCLI-D-17-0028.1
    [68] Zuo Z Y, Zhang R H.Influence of soil moisture in eastern China on East Asian summer monsoon.Adv Atmos Sci, 2016, 33:151-163. doi:  10.1007/s00376-015-5024-8
    [69] Zuo Z Y, Yang S, Zhang R H, et al.Response of summer rainfall over China to spring snow anomalies over Siberia in the NCEP CFSv2 reforecast.Quart J Royal Meteor Soc, 2015, 141:939-944. doi:  10.1002/qj.2413
    [70] Zuo Z Y, Zhang R H, Wu B Y, et al.Decadal variability in springtime snow over Eurasia:Relation with circulation and possible influence on springtime rainfall over China.Int J Climatol, 2012, 32:1336-1345. doi:  10.1002/joc.2355
    [71] Zuo Z Y, Yang S, Wang W Q, et al.Relationship between anomalies of Eurasian snow and southern China rainfall in winter.Environ Res Lett, 2011, 6, DOI: 10.1088/1748-9326/6/4/045402.
    [72] He Q, Zuo Z Y, Zhang R H, et al.Prediction skill and predictability of Eurasian snow cover fraction in the NCEP Climate Forecast version 2 reforecasts.Int J Climatol, 2016, 36:4071-4084. doi:  10.1002/joc.4618
    [73] Liu B Q, Zhu C W, Yuan Y, et al.Two types of interannual variability of South China Sea summer monsoon onset related to the SST anomalies before and after 1993/94.J Climate, 2016, 29:6957-6971. doi:  10.1175/JCLI-D-16-0065.1
    [74] Liu B Q, Zhu C W, Yuan Y, Two interannual dominant modes of the South Asian High in May and their linkage to the tropical SST anomalies.Climate Dyn, 2017, 49:2705-2720. doi:  10.1007/s00382-016-3490-z
    [75] Liu B Q, Zhu C W, Su J Z, et al.Why was the western Pacific subtropical anticyclone weaker in late summer after the 2015/2016 super El Niño?Int J Climatol, 2018, 38:55-65. doi:  10.1002/joc.5160
    [76] Yuan N M, Fu Z T, Zhang H, et al.Detrended partial-cross-correlation analysis:A new method for analyzing correlations in complex system.Scientific Reports, 2016, 5:8143. http://cn.bing.com/academic/profile?id=1683baf2999075656f57bc56da29fd4f&encoded=0&v=paper_preview&mkt=zh-cn
    [77] Podobnik B, Stanley H E.Detrended cross-correlation analysis:A new method for analyzing two nonstationary time series.Phys Rev Lett, 2008, 100:084102. doi:  10.1103/PhysRevLett.100.084102
    [78] Zebende G F.DCCA cross-correlation coefficients:Quantifying level of cross-correlation.Physica A, 2011, 390:614-618. doi:  10.1016/j.physa.2010.10.022
  • 加载中
图(8)
计量
  • 摘要浏览量:  5361
  • HTML全文浏览量:  1614
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-04-26
  • 刊出日期:  2019-07-31

目录

    /

    返回文章
    返回