留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利于上行负地闪始发的电荷区参数数值模拟

王艺儒 谭涌波 郑天雪 余骏皓 李春笋 刘敏芝

王艺儒, 谭涌波, 郑天雪, 等. 利于上行负地闪始发的电荷区参数数值模拟. 应用气象学报, 2020, 31(2): 175-184. DOI: 10.11898/1001-7313.20200205..
引用本文: 王艺儒, 谭涌波, 郑天雪, 等. 利于上行负地闪始发的电荷区参数数值模拟. 应用气象学报, 2020, 31(2): 175-184. DOI: 10.11898/1001-7313.20200205.
Wang Yiru, Tan Yongbo, Zheng Tianxue, et al. Numerical simulation of main negative charge area parameters for upward negative cloud-to-ground lightning. J Appl Meteor Sci, 2020, 31(2): 175-184. DOI:  10.11898/1001-7313.20200205.
Citation: Wang Yiru, Tan Yongbo, Zheng Tianxue, et al. Numerical simulation of main negative charge area parameters for upward negative cloud-to-ground lightning. J Appl Meteor Sci, 2020, 31(2): 175-184. DOI:  10.11898/1001-7313.20200205.

利于上行负地闪始发的电荷区参数数值模拟

DOI: 10.11898/1001-7313.20200205
资助项目: 

国家自然科学基金项目 41875003

国家重点研究发展计划 2017YFC1501504

中国气象科学研究院灾害天气国家重点实验室开放课题 19LASW-A03

详细信息
    通信作者:

    谭涌波, ybtan@ustc.edu

Numerical Simulation of Main Negative Charge Area Parameters for Upward Negative Cloud-to-ground Lightning

  • 摘要: 在经典偶极性电荷结构下,结合已有的闪电放电参数化方案及中国气象局雷电野外科学试验基地的广州高建筑物雷电观测站(Tall-Object Lightning Observatory in Guangzhou,TOLOG)观测分析结果,不断调整主负电荷区参数进行二维高分辨率闪电模拟试验,讨论自持型上行负地闪与云中闪电之间的相互竞争关系以及有利于自持型上行负地闪始发的云中电荷结构。数值模拟结果表明:自持型上行负地闪始发与电荷结构存在一定关系,在主负电荷区越高的情况下,始发自持型上行负地闪需要的主负区电荷密度与电荷分布范围越大。对于不同类型的闪电始发条件,推测存在自持型上行负地闪始发的主负电荷区高度阈值,当主负电荷区高度高于该值时,随着主负区电荷量的不断累积,会始发起始于云中的闪电而不是自持型上行负地闪,当主负电荷区高度低于该值时,电荷的不断积累会导致自持型上行负地闪始发。
  • 图  1  雷暴云偶极性电荷结构示意图[35]

    Fig. 1  Diagram of dipolar charge structure in thunderstorm clouds (from Reference [35])

    图  2  主负电荷区不同高度的闪电通道结构及放电前电位分布

    (实线和虚线分别代表正、负电位等值线,单位:MV;彩色代表闪电通道发展步数)

    Fig. 2  Lightning channel structure and potential distribution at different heights in the main negative charge zone before discharge

    (solid and dashed lines denote the positive and negative potential contours, unit:MV; the color denotes the sequence of lightning channel development)

    图  3  主负电荷区不同水平范围的闪电通道结构及放电前电位分布

    (实线和虚线分别代表正、负电位等值线,单位:MV;彩色代表闪电通道发展步数)

    Fig. 3  Lightning channel structure and potential distribution map in different horizontal ranges of the main and negative charge zone before discharge

    (solid and dotted lines denote the positive and negative potential contours, unit:MV; the color denotes the sequence of lightning channel development step)

    图  4  有利于上行负地闪发展的主负电荷区高度与电荷浓度以及云中电场极值

    (离散点为有利于自持型上行负地闪的参数点,彩色为对应参数下的云中最强电场)

    Fig. 4  The height and charge concentration of the main negative charge region and the extreme value of electric field in cloud for the development of upward negative cloud-to-ground lightning

    (the discrete point is the parameter point which is beneficial to self-sustaining up-going ground flashover, the color is the strongest electric field in space under corresponding parameters)

    表  1  雷暴云电荷区的空间参数和电荷参数

    Table  1  Geometrical and electrical parameters of thunderstorm clouds

    电荷区 ρ0/(nC·m-3) z0/km rx/km rz/km
    S区 -1.0 9.5 4.0 1.0
    P区 2.2 7.0 4.0 1.5
    N区 0.8~3.6 2.5~4.0 3.0~4.5 1.5
    下载: 导出CSV

    表  2  主负电荷区不同高度下有利于上行负地闪发展电荷背景及其他参数

    Table  2  Charge background and other parameters for upward negative cloud-to-ground lightning development in the main negative charge area at different heights

    案例 主负电荷区z0/km 主负电荷区ρ0/(nC·m-3) 云中电场强度极值/(kV·m-1) 地面建筑高度电场/(kV·m-1) 闪电通道总步长/km
    UNL1 3.75 2.5 139.3 15.4 20.19
    UNL2 3.5 1.8 124.2 15.2 12.56
    UNL3 3.2 1.3 127.5 15.4 8.12
    UNL4 3.0 1.2 129.5 15.6 8.93
    下载: 导出CSV

    表  3  主负电荷区不同水平范围下有利于上行负地闪发展电荷背景及其他参数

    Table  3  Charge background and other parameters for upward negative cloud-to-ground lightning development in the main negative charge area for different horizontal ranges

    案例编号 主负电荷区rx/km 主负电荷区ρ0/(nC·m-3) 云中电场最大值/(kV·m-1) 地面建筑高度电场/(kV·m-1) 闪电通道总步长/km
    UNL2 3.0 1.8 124.2 15.2 12.56
    UNL5 3.25 1.7 124.2 15.2 11.91
    UNL6 3.5 1.6 124.2 15.0 11.54
    UNL7 4.0 1.5 124.1 15.3 12.66
    UNL8 4.25 1.4 123.9 15.9 14.77
    下载: 导出CSV
  • [1] Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.J Geophys Res Atmos, 2012, 117(D8):102-105.
    [2] Zhou H, Diendorfer G, Thottappillil R, et al.Characteristics of upward positive lightning flashes initiated from the Gaisberg Tower.J Geophys Res Atmos, 2012, 117(D6):110-123.
    [3] Warner T A.Observations of simultaneous upward lightning leaders from multiple tall structures.Atmos Res, 2012, 117(11):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4855e3738c98683a8ff69d8be55e54de
    [4] Takagi N, Wang D, Watanabe T A.Study of upward positive leaders based on simultaneous observation of E-fields and high-speed images.IEEE Transactions on Fundamentals & Materials, 2006, 126(126):256-259.
    [5] 武斌, 吕伟涛, 齐奇, 等.次正地闪触发两个并发上行闪电的光电观测, 应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [6] Wu B, Lv W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash.Geophys Res Lett, 2019, 46:14-27.
    [7] Wu B, Lyu W, Qi Q, et al.Synchronized two-station optical and electric field observations of multiple upward lightning flashes triggered by a 310-kA+CG flash.J Geophys Res Atmos, 2019, 124:1050-1063. doi:  10.1029/2018JD029378
    [8] Qi Q, Lyu W, Wu B, et al.Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning.Atmos Res, 2018, 214:275-283. doi:  10.1016/j.atmosres.2018.08.003
    [9] Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader.J Geophys Res Atmos, 2016, 121(24):14307-14315. doi:  10.1002/2016JD025605
    [10] Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):93-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2017JD027198
    [11] Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential.J Geophys Res Atmos, 2014, 119(2):1003-1014. doi:  10.1002/2013JD019983
    [12] 刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi:  10.11898/1001-7313.20160102
    [13] 周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. doi:  10.11898/1001-7313.20160205
    [14] 廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
    [15] 张义军, 张阳.雷暴闪电放电活动对电离层影响的研究进展.应用气象学报, 2016, 27(5):570-576. doi:  10.11898/1001-7313.20160506
    [16] 谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. doi:  10.11898/1001-7313.20170210
    [17] 张义军, 孟青, 吕伟涛, 等.两次超级单体雷暴的电荷结构及其地闪特征.科学通报, 2005, 50(23):2663-2675. http://d.old.wanfangdata.com.cn/Periodical/kxtb200523017
    [18] Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorm.Nat Geosci, 2008, 1:233-237. doi:  10.1038/ngeo162
    [19] Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1/2):241-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a76ecb103e5beee8fab96e3214815
    [20] 谭涌波, 陈超, 周洁晨, 等.积云模式中上行地闪的参数化方案及起始有利云内环境特征的探讨.中国科学(D辑), 2016, 46(7):986-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201607010
    [21] 谭涌波, 梁忠武, 师正, 等.雷暴云底部正电荷区对闪电类型影响的数值模拟.中国科学(D辑), 2014, 44(12):2743-2752. http://d.old.wanfangdata.com.cn/Conference/8187034
    [22] Carey L D, Murphy M J, McCormick T L, et al.Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system.J Geophys Res, 2005, 110(D3):105-128. doi:  10.1029-2003JD004371/
    [23] Liu D, Qie X, Pan L, et al.Some characteristics of lightning activity and radiation source distribution in a squall line over north China.Atmos Res, 2013, 118(10):423-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21067f4e255936c421df187eb742884f
    [24] Jiang R, Sun Z, Wu Z.Concurrent upward lightning flashes from two towers.Atmos Oceanic Sci Lett, 2014, 7(3):260-264. doi:  10.1080/16742834.2014.11447171
    [25] 郭秀峰, 张其林, 张金波, 等.具有不对称结构的电晕放电模型建立及应用.科学技术与工程, 2018, 18(8):13-20. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201808003
    [26] 谭涌波, 周博文, 郭秀峰, 等.建筑物高度对上行闪电触发以及传播影响的数值模拟.气象学报, 2015, 73(3):546-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201503011
    [27] Tan Y, Guo X, Zhu J, et al.Influence on simulation accuracy of atmospheric electric field around a building by space resolution.Atmos Res, 2014, 138(138):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e155d00258b987fa12eb58735c8e4ca3
    [28] Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2):196-199.
    [29] Warner T A, Lang T J, Lyons W A.Syonptic scale outbreak of self-initiated upward lightning(SIUL) from tall structures during the central US blizzard of 1-2 February 2011.J Geophys Res, 2014, 119:9530-9548.
    [30] Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the hokuriku winter thunderstorms.J Geophys Res Oceans, 1982, 87(C2):1207-1215. doi:  10.1029/JC087iC02p01207
    [31] Hager W W, Aslan B C, Sonnenfeld R G, et al.Three-dimensional charge structure of a mountain thunderstorm.J Geophys Res, 2010, 115(D12):119-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15b67458a9e1ab310e2a110a80db99c
    [32] Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmos Res, 2014, 149:111-119. doi:  10.1016/j.atmosres.2014.06.007
    [33] Ishii M, Saito M, Miki T, et al.Observation of Downward and Upward Lightning Flashes at 634-m Tower//XV International Conference on Atmospheric Electricity, 2014: 15-20.
    [34] Tan Y, Zheng T, Shi Z, et al.Improved lightning model:Application to discuss the characteristics of upward lightning.Atmos Res, 2019, 217:63-72. doi:  10.1016/j.atmosres.2018.10.011
    [35] 林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. doi:  10.11898/1001-7313.20180311
    [36] 于梦颖, 谭涌波, 师正, 等.通道感应电荷对放电活动特征的影响.应用气象学报, 2019, 30(1):105-116. doi:  10.11898/1001-7313.20190110
    [37] 张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jamsweb/article/id/20140501
    [38] 郭凤霞, 王曼霏, 黄兆楚, 等.青藏高原雷暴电荷结构特征及成因的数值模拟研究.高原气象, 2018, 37(4):911-922. http://d.old.wanfangdata.com.cn/Periodical/gyqx201804004
    [39] 张廷龙, 郄秀书, 袁铁等.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演.大气科学, 2008, 32(5):1221-1228. http://d.old.wanfangdata.com.cn/Periodical/daqikx200805019
    [40] Mansell E R.Simulated three-dimensional branched lightning in a numerical thunderstorm model.J Geophys Res, 2002, 107(D9):4075-4088.
    [41] Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions:2.Isolated storms.J Geophys Res, 1998, 103(D12):14079-14096. doi:  10.1029/97JD03547
    [42] 谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分支结构的数值模拟.中国科学(D辑), 2006, 36(3):486-496.
  • 加载中
图(4) / 表(3)
计量
  • 摘要浏览量:  3868
  • HTML全文浏览量:  1542
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-01-08
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回