留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次暖云强降水主导的对流单体闪电活动特征

刘泽 郭凤霞 郑栋 张阳 吴翀 姚雯

刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196. DOI: 10.11898/1001-7313.20200206..
引用本文: 刘泽, 郭凤霞, 郑栋, 等. 一次暖云强降水主导的对流单体闪电活动特征. 应用气象学报, 2020, 31(2): 185-196. DOI: 10.11898/1001-7313.20200206.
Liu Ze, Guo Fengxia, Zheng Dong, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. DOI:  10.11898/1001-7313.20200206.
Citation: Liu Ze, Guo Fengxia, Zheng Dong, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. DOI:  10.11898/1001-7313.20200206.

一次暖云强降水主导的对流单体闪电活动特征

DOI: 10.11898/1001-7313.20200206
资助项目: 

国家重点研究发展计划 2017YFC1501503

国家自然科学基金项目 41875001

国家自然科学基金项目 41975003

国家自然科学基金项目 41675005

详细信息
    通信作者:

    郑栋, zhengdong@cma.gov.cn

Lightning Activities in a Convection Cell Dominated by Heavy Warm Cloud Precipitation

  • 摘要: 利用中国气象局雷电野外科学试验基地(CMA_FEBLS)三维闪电观测数据,结合广州双偏振雷达观测数据,分析了2017年5月7日广东一次暖云强降水对流单体的闪电活动及其与云降水结构的关系。该单体在4 h内产生1250个闪电,地闪比例约24%。绝大多数闪电出现在4~12 km高度,对应温度层为0℃至-40℃;闪电放电活动的峰值高度出现在8.5 km,对应环境温度约-19℃。分析的强降水单体宏观上呈现上正、中负、下正的三极性电荷结构,中部负电荷核心区约为-8℃至-15℃。在闪电活动区域中,由干雪粒子主导区域占比约82%,霰粒子主导区域占比约11%,且大部分与闪电活动关联的霰粒子主要位于4~8 km高度。总闪频数与30 dBZ雷达回波顶高、-20℃温度层上大于20 dBZ的回波体积具有较好的相关性。闪电活动的平均位置高度与20 dBZ雷达回波顶高和-20℃温度层上大于30 dBZ的回波体积具有较好的相关关系。闪电活动与最大降水强度之间具有较好的时序对应关系,单个闪电表征降水量的值为107 kg/fl量级。
  • 图  1  2017年5月7日00:06, 01:30和03:00雷达组合反射率因子

    (图中位置坐标采用以广州雷达(黑色五角星)为中心的距离坐标表示,黑色三角形表示LFEDA的10个站点位置,两个以广州雷达为圆心的黑色同心圆表示距雷达中心50, 100 km范围,红色圆表示LFEDA站网中心100 km范围,紫色椭圆为分析单体,黑色圆点为叠加的闪电脉冲放电事件(放电事件),白色实线表示剖面位置)

    Fig. 1  The radar composite reflectivity factor at 0006 BT, 0130 BT and 0300 BT on 7 May 2017

    (the origin of distance coordinate is located at the position of Guangzhou radar (black star), black triangles indicate 10 substations involved in LFEDA, two black concentric circles centered on Guangzhou radar indicate 50 and 100 km ranges from radar center, and red circle indicates the 100 km range of LFEDA network center, the purple ellipse indicates analyzed cells, black dots are lightning pulse discharge events (LPDE), the white solid line represents the position of vertical cross sections)

    图  2  2017年5月7日00:06,01:30和03:00广州雷达变量垂直剖面

    (图中灰色圆点为叠加的对应剖面(图 1白色实线)半宽5 km范围内的放电事件,黑色虚线从下到上分别表示2017年5月6日20:00清远探空站0,-10,-20,-30,-40℃温度层高度)

    Fig. 2  Vertical cross sections of Guangzhou radar variable at 0006 BT, 0130 BT and 0300 BT on 7 May 2017

    (gray dots represent lightning pulse discharge event(LPDE) within 5 km of vertical cross sections (the solid white line in Fig. 1), dashed black lines indicate the height of 0, -10, -20, -30℃ and -40℃ isotherms, which provided by Qingyuan sounding at 2000 BT 6 May 2017)

    图  3  2017年5月7日00:00—04:00分析单体内放电事件和总闪频数

    随时间变化(时间间隔为6 min)

    Fig. 3  Evolution of frequencies of LPDE and flashes in the investigated cell during

    0000-0400 BT on 7 May 2017 (time interval is 6 min)

    图  4  2017年5月7日00:00—04:00分析单体内闪电活动

    (a)放电事件密度随高度和时间的分布(时间间隔为6 min,高度间隔为1 km,其上叠加上、下行负先导闪电起始位置以及正负地闪发生时间;黑色虚线从下到上分别表示2017年5月6日20:00清远探空站0,-10,-20,-30,-40℃温度层高度),(b)放电事件和上、下行负先导闪电起始位置的高度分布

    Fig. 4  Lightning activity in the investigated cell during 0000—0400 BT on 7 May 2017

    (a)density of LPDE as a function of height and time (time interval is 6 min, height interval is 1 km, the initiation of upward negative initial leader(UNIL) and downward negative initial leader(DNIL) and positive cloud-to-ground lightning flashes and negative cloud-to-ground lightning flashes are superposed, dashed black lines labelled the isotherms of 0, -10, -20, -30℃ and -40℃ obtained from Qingyuan sounding at 2000 BT 6 May 2017), (b)height distributions of LPDE and initiation dots of UNIL and DNIL

    图  5  2017年5月7日00:00—04:00分析单体内放电事件位置对应不同相态水成物粒子网格在不同高度上所占比例

    Fig. 5  Proportions of radar grid boxes with different-type hydrometeors in LPDE position at different heights in the investigated cell during 0000-0400 BT on 7 May 2017

    图  6  2017年5月7日00:00—04:00分析单体内放电事件频数以及对应干雪和霰产生放电事件的网格比例在各高度的分布

    Fig. 6  Proportions of radar grid boxes dominantly featured by graupel and dry snow and the frequency of LPDE at different heights in the investigated cell during 0000-0400 BT on 7 May 2017

    图  7  2017年5月7日00:00—04:00分析单体内闪电活动与雷达回波参数变化

    (数据经五点滑动平均处理,黑色虚线从下到上分别表示2017年5月6日20:00清远探空站0, -10, -20, -30, -40℃温度层高度) (a)总闪频数与30 dBZ雷达回波顶高,(b)总闪频数与不同高度范围反射率因子大于20 dBZ回波体积(V0, V-10, V-15, V-20Vall依次表示0, -10, -15, -20℃温度层和整个单体体积),(c)平均放电事件高度与20 dBZ雷达回波顶高,(d)平均放电事件高度与不同高度范围反射率因子大于30 dBZ回波体积

    Fig. 7  Time-sequence changes of lightning activity and echo parameters in the investigated cell during 0000-0400 BT on 7 May 2017 (data processed by five-point moving average, dashed black lines indicate heights of 0, -10, -20, -30℃ and -40℃ isotherms, which provided by Qingyuan sounding at 2000 BT 6 May 2017)

    (a)total flash frequency versus 30 dBZ radar echo top height, (b)total flash frequency versus volumes of regions with radar echoes above 20 dBZ in different height ranges (V0, V-10, V-15, V-20 and Vall represent 0, -10, -15, -20℃ layer and the cell, respectively), (c)average height of LPDE versus 20 dBZ radar echo top height, (d)average height of LPDE versus volumes of regions with radar echoes above 30 dBZ in different height ranges

    图  8  2017年5月7日00:00—04:00分析单体内闪电活动与降水特征变化

    (数据经五点滑动平均处理) (a)总闪频数与最大降水强度,(b)总闪频数与降水率大于2 mm·h-1 (R2 mm·h-1)和20 mm·h-1 (R20 mm·h-1)区域对应的降水量

    Fig. 8  Time-sequence changes of lightning frequency and precipitation characteristics in the investigated cell during 0000-0400 BT on 7 May 2017 (data processed by five-point moving average)

    (a)total flash frequency versus maximum precipitation intensity, (b)total flash frequency and rainfall quantity in the regions where the rain rate greater than 2 mm·h-1 and 20 mm·h-1, respectively

  • [1] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J Atms Sci, 1978, 35(8):1536-1548.
    [2] 王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. http://qikan.camscma.cn/jamsweb/article/id/20090507
    [3] 张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. http://qikan.camscma.cn/jamsweb/article/id/200606130
    [4] Zheng D, MacGorman D R.Characteristics of flash initiations in a supercell cluster with tornadoes.Atmos Res, 2016, 167:249-264.
    [5] Mecikalski R M, Carey L D.Radar reflectivity and altitude distributions of lightning flashes as a function of three main storm types.J Geophys Res Atmos, 2018, 123(22):12814-12828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2018JD029238
    [6] Wang C, Zheng D, Zhang Y, et al.Relationship between lightning activity and vertical airflow characteristics in thunderstorms.Atmos Res, 2017, 191:12-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28c1184334b3055e7cb41d864efd1820
    [7] Wang F, Zhang Y, Zheng D, et al.Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm.Acta Meteor Sinica, 2015, 29(2):328-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201502014
    [8] 王飞, 张义军, 赵均壮, 等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报, 2008, 19(2):153-160. http://qikan.camscma.cn/jamsweb/article/id/20080228
    [9] Carey L D, Petersen W A, Rutledge S A.Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998.Mon Wea Rev, 2003, 131(8):1811. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cae24d5e34f79ddfd13d97abbff365b
    [10] 孟青, 樊鹏磊, 郑栋, 等.青藏高原那曲地区地闪与雷达参量关系.应用气象学报, 2018, 29(5):524-533. doi:  10.11898/1001-7313.20180502
    [11] 王艳, 郑栋, 张义军.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. http://qikan.camscma.cn/jamsweb/article/id/20110308
    [12] 郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. http://qikan.camscma.cn/jamsweb/article/id/20100304
    [13] 王婷波, 郑栋, 周康辉, 等.暴雨和雹暴个例中闪电特征对比.应用气象学报, 2017, 28(5):568-578. doi:  10.11898/1001-7313.20170505
    [14] 王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. http://qikan.camscma.cn/jamsweb/article/id/20140104
    [15] 冯桂力, 郄秀书, 袁铁, 等.雹暴的闪电活动特征与降水结构研究.中国科学(D辑), 2007, 37(1):123-132. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200701014
    [16] Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1/2):241-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a76ecb103e5beee8fab96e3214815
    [17] Shi D D, Zheng D, Zhang Y, et al.Low-frequency E-field Detection Array (LFEDA)-Construction and preliminary results.Sci China Earth Sci, 2017, 60(10):1896-1908.
    [18] Fan X P, Zhang Y J, Zheng D, et al.A new method of three-dimensional location for low-frequency electric field detection array.J Geophys Res Atmos, 2018, 123(16):8792-8812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1045389X9300400102
    [19] Zheng D, Shi D, Zhang Y, et al.Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions.J Geophys Res Atmos, 2019, 124(14):8025-8042. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2019JD030300
    [20] MacGorman D R, Rust W D, Schuur T J, et al.TELEX the thunderstorm electrification and lightning experiment.Bull Amer Meteor Soc, 2008, 89(7):997-1014.
    [21] Wu C, Liu L, Wei M, et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China.Adv Atmos Sci, 2018, 35(3):296-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201803006
    [22] Park H S, Ryzhkov A V, Zrni c' D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748.
    [23] Chen H, Chandrasekar V, Bechini R.An improved dual-polarization radar rainfall algorithm (DROPS2.0):Application in NASA IFloodS field campaign.J Hydrometeorol, 2017, 18(4):917-937.
    [24] 傅佩玲, 胡东明, 张羽, 等.2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析.气象, 2018, 44(4):500-510. http://d.old.wanfangdata.com.cn/Periodical/qx201804003
    [25] 田付友, 郑永光, 张小玲, 等.2017年5月7日广州极端强降水对流系统结构, 触发和维持机制.气象, 2018, 44(4):469-484. http://d.old.wanfangdata.com.cn/Periodical/qx201804001
    [26] 徐珺, 毕宝贵, 谌芸, 等."5.7"广州局地突发特大暴雨中尺度特征及成因分析.气象学报, 2018, 76(4):511-524. http://d.old.wanfangdata.com.cn/Periodical/qxxb201804002
    [27] 曾智琳, 谌芸, 朱克云, 等.2017年"5.7"广州特大暴雨的中尺度特征分析与成因初探.热带气象学报, 2018, 34(6):791-805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201806008
    [28] Zheng D, Zhang Y, Meng Q, et al.Climatological comparison of small-and large-current cloud-to-ground lightning flashes over southern China.J Climate, 2016, 29(8):2831-2848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=295248d7d913e31a45cb0fa997c2e6b4
    [29] Krehbiel P R.The Electrical Structure of Thunderstorms.The Earth's Electrical Environment, 1986:90-113.
    [30] Williams E R.The tripole structure of thunderstorms.J Geophys Res Atmos, 1989, 94(D11):13151-13167. http://d.old.wanfangdata.com.cn/Conference/WFHYXW653012
    [31] 石玉恒, 张义军, 郑栋, 等.北京地区雷暴的雷达回波特征与闪电活动的相关关系.气象, 2012, 38(1):66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201201007
    [32] 易笑园, 张义军, 王红艳, 等.线状中尺度对流系统内多个强降水单体的结构演变及闪电活动特征.气象学报, 2013, 71(6):1035-1046. http://d.old.wanfangdata.com.cn/Periodical/qxxb201306004
    [33] 王婷波.北京地区雷暴闪电活动与降水关系的分类研究.成都: 成都信息工程学院, 2013.
    [34] 齐鹏程, 郑栋, 张义军, 等.青藏高原闪电和降水气候特征及时空对应关系简.应用气象学报, 2016, 27(4):488-497. doi:  10.11898/1001-7313.20160412
    [35] Zheng D, Zhang Y, Meng Q, et al.Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy.Adv Atmos Sci, 2016, 33(3):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201603009
    [36] Chang D E, Weinman J A, Morales C A, et al.The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm.Mon Wea Rev, 2001, 129(8):1809-1833.
    [37] Soula S, Chauzy S.Some aspects of the correlation between lightning and rain activities in thunderstorms.Atmos Res, 2001, 56:355-373. doi:  10.1016-S0169-8095(00)00086-7/
  • 加载中
图(8)
计量
  • 摘要浏览量:  3824
  • HTML全文浏览量:  1478
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-26
  • 修回日期:  2020-01-09
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回