留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

初始长连续电流引起的地电位抬升和SPD损坏

陈绍东 张义军 颜旭 杜赛 吕伟涛 张阳

陈绍东, 张义军, 颜旭, 等. 初始长连续电流引起的地电位抬升和SPD损坏. 应用气象学报, 2020, 31(2): 236-246. DOI: 10.11898/1001-7313.20200210..
引用本文: 陈绍东, 张义军, 颜旭, 等. 初始长连续电流引起的地电位抬升和SPD损坏. 应用气象学报, 2020, 31(2): 236-246. DOI: 10.11898/1001-7313.20200210.
Chen Shaodong, Zhang Yijun, Yan Xu, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. DOI:  10.11898/1001-7313.20200210.
Citation: Chen Shaodong, Zhang Yijun, Yan Xu, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. DOI:  10.11898/1001-7313.20200210.

初始长连续电流引起的地电位抬升和SPD损坏

DOI: 10.11898/1001-7313.20200210
资助项目: 

国家自然科学基金项目 41775007

国家重点研究发展计划 2017YFC1501506

中国气象科学研究院基本科研业务费专项 2018Z003

详细信息
    通信作者:

    陈绍东, 15035026@qq.com

Ground Potential Rise and Surge Protective Device Damage Caused by Initial Long Continuous Current Process in Triggered Lightning

  • 摘要: 在电子电气系统接地领域,地电位抬升对电子设备的破坏效应一直是人们关注的焦点。基于触发闪电技术,开展了地网地电位抬升冲击电涌保护器(surge protective device,SPD)的观测试验,重点分析了触发闪电初始长连续电流过程对SPD的冲击和损坏效应。结果发现,触发闪电注入地网后,闪电的初始长连续电流和继后回击的共同作用下很容易造成额定通流量的SPD损坏,当流经SPD的能量累积达到一定程度时仅初始长连续电流过程也会损坏SPD;冲击SPD的效应与初始长连续电流过程的不同的波形密切相关,当长连续电流过程叠加上升沿较快幅值较大的初始连续电流脉冲(ICCP,initial continuous current pulse)时,流经SPD的能量会迅速增加,是长连续电流过程中SPD损坏的最为关键因子。个例分析发现,当初始长连续电流过程持续时间和平均电流量级达到100 ms和200 A左右,泄放电量为25 C,流经SPD的能量达1000 J左右,易造成标称放电电流20 kA甚至更高的SPD损坏。
  • 图  1  地网GPR冲击SPD效应试验布置示意图

    Fig. 1  The schematic diagram of GPR's impact on SPD effect

    图  2  T0702小量程触发闪电通道底部电流

    Fig. 2  Small range triggered lightning channel bottom current of T0702

    图  3  T0702初始长连续电流对应的SPD残压(a)、触发闪电电流(b)和SPD接地线电流(c)波形

    Fig. 3  The waveform of SPD residual voltage(a), triggered lightning current(b) and current flowing through SPD(c) due to the initial long continuous current of T0702

    图  4  T0726 SPD残压波形(a)和大量程触发闪电通道底部电流(b)

    Fig. 4  SPD residual voltage(a) and large range triggered lightning channel bottom current(b) of T0726

    图  5  T0726初始长连续电流对应的SPD残压(a)、地电位抬升电压(b)和SPD接地线电流(c)波形

    Fig. 5  The waveform of SPD residual voltage(a), GPR voltage(b) and current flowing through SPD(c) due to the initial long continuous current of T0726

    图  6  T0702和T0726流经SPD 0.5 ms能量值和时域能量累积曲线

    Fig. 6  The energy accumulated in 0.5 ms and time domain of current flowing through SPD during T0702 and T0726

    图  7  T0702和T0725触发闪电0.5 ms电量和时域电量累积曲线

    Fig. 7  The quantity in 0.5 ms and time domain quantity accumulation curves of triggered lightning current during T0702 and T0725

    表  1  初始长连续电流过程引起GPR冲击SPD的闪电过程

    Table  1  Triggered lightning processes of GPR impulse to SPD caused by initial long continuous current processes

    触发闪电过程 回击次数及电流峰值 初始长连续电流特征 SPD损坏时刻前的初始连续电流特征 SPD标称放电电流/kA
    T0626 无回击 长连续电流长达480 ms,2 kA以上电流持续时间长达1.3 ms(只有小量程数据) 20
    T0702 1次回击,电流幅值为19.1 kA 持续时间为433.8 ms,峰值电流为718.5 A,平均电流为146.1 A,中和电量为63.4 C 持续时间为149.2 ms,期间平均电流为173.8 A,泄放电量为25.9 C 20
    T0725 4次回击,最大回击电流为26.1 kA 持续时间为313.6 ms,峰值电流为287.4 A,平均电流为106.8 A,中和的电量为33.5 C 初始连续电流期间未损坏,第1次回击出现异常 20
    T0726 4次回击,最大回击电流峰值大于28.7 kA 持续时间为183.3 ms,峰值电流为1079.2 A,平均电流为176.4 A,中和的电量为32.3 C 持续时间为110.1 ms,平均电流为238.3 A,泄放电量为26.2 C 40
    下载: 导出CSV
  • [1] Eda K.Destruction mechanism of ZnO varistors due to high currents.J Appl Phys, 1984, 56(10):2948-2955. doi:  10.1063/1.333836
    [2] Sakshaug E C, Burke J J, Kresge J S.Metal oxide arresters on distribution systems:Fundamental considerations.IEEE Transactions on Power Delivery, 1989, 4(4):2076-2089. doi:  10.1109/61.35633
    [3] 何金良, 吴维韩, 沈力, 等.ZnO阀片的冲击破坏机理.中国电机工程学报, 1993, 13(增刊I):34-38.
    [4] 瞿佥炜, 戴明秋, 李锐海, 等.配网线路避雷器阀片90/200μs冲击电流耐受特性试验.南方电网技术, 2015, 9(7):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfdwjs201507008
    [5] 吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [6] Yang J, Qie X, Zhang G, et al.Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE.J Geophys Res, 2010, 115(D23), DOI: 10.1029/2010jd014420.
    [7] 张骁, 张阳, 张义军, 等.NBE和IBP始发的闪电初始特征.应用气象学报, 2018, 29(3):364-373. doi:  10.11898/1001-7313.20180310
    [8] 姜睿娇, 董万胜, 刘恒毅, 等.雷暴中双极性窄脉冲事件的位置与辐射强度.应用气象学报, 2018, 29(2):177-187. doi:  10.11898/1001-7313.20180205
    [9] Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003:265-307. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200803001
    [10] Jiang R, Qie X, Yang J, et al.Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism.Radio Science, 2013, 48(5):597-606. doi:  10.1002/rds.20065
    [11] 谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    [12] Haryono T, Sirait K T, Tumiran T, et al.The damage of ZnO arrester block due to multiple impulse currents.Telkomnika (Telecommunication Computing Electronics and Control), 2011, 9(1):171-182. doi:  10.12928/telkomnika.v9i1.685
    [13] 李鹏飞, 张春龙, 吕东波, 等.多脉冲雷电冲击下金属氧化物的破坏形式.高电压技术, 2017, 43(11):3792-3799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201711040
    [14] Chen S, Zhang Y, Chen C, et al.Influence of the ground potential rise on the residual voltage of low-voltage surge protective devices due to nearby lightning flashes.IEEE Transactions on Power Delivery, 2016, 31(2):596-604. doi:  10.1109/TPWRD.2015.2441773
    [15] 朱良, 陈绍东, 颜旭, 等.基于触发闪电的共用地网雷电流分布观测及分析.高电压技术, 2018(5):1715-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201805042
    [16] 张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [17] 钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
    [18] Mata C T, Rakov V A, Rambo K J, et al.Measurement of the division of lightning return stroke current among the multiple arresters and grounds of a power distribution line.IEEE Transactions on Power Delivery, 2003, 18(4):1203-1208. doi:  10.1109/TPWRD.2003.817541
    [19] Zhang Y, Chen S, Zheng D, et al.Experiments on lightning protection for automatic weather stations using artificially triggered lightning.IEEJ Transactions on Electrical and Electronic Engineering, 2013, 8(4):313-321. doi:  10.1002/tee.21861
    [20] 周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [21] Saba M M, Schumann C, Warner T A, et al.Upward lightning flashes characteristics from high-speed videos.J Geophys Res Atmos, 2016, 121(14):8493-8505. doi:  10.1002/2016JD025137
    [22] Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):12093-12105. doi:  10.1002/2017JD027198
    [23] 武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [24] 陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. doi:  10.11898/1001-7313.20150306
    [25] DeCarlo B A, Rakov V A, Jerauld J E, et al.Distribution of currents in the lightning protective system of a residential building-Part Ⅰ:Triggered-lightning experiments.IEEE Transactions on Power Delivery, 2008, 23(4):2439-2446. doi:  10.1109/TPWRD.2008.917894
    [26] Birkl J, Barbosa C F.Modeling the Current Through the Power Conductors of an Installation Struck by Lightning//2011 International Symposium on Lightning Protection.IEEE, 2011:36-41.
    [27] Schoene J, Uman M A, Rakov V A, et al.Lightning currents flowing in the soil and entering a test power distribution line via its grounding.IEEE Transactions on Power Delivery, 2009, 24(3):1095-1103. doi:  10.1109/TPWRD.2009.2014031
    [28] Chen S, Zhang Y, Zhou M, et al.Observation of residual voltage in low-voltage surge protective devices due to nearby M-components.IEEE Transactions on Electromagnetic Compatibility, 2018, 60(3):776-784. doi:  10.1109/TEMC.2017.2737648
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  3353
  • HTML全文浏览量:  1431
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回