成林,方文松. 气候变化对雨养冬小麦水分利用效率的影响估算. 应用气象学报,2015,26(3):300-310. doi:10.11898/1001-7313.20150305

气候变化对雨养冬小麦水分利用效率的影响估算

成 林^{1)2)*} 方文松¹⁾²⁾

¹⁾(中国气象局农业气象保障与应用技术重点开放实验室,郑州 450003)
 ²⁾(河南省气象科学研究所,郑州 450003)

摘 要

研究气候变化对雨养冬小麦水分利用效率的影响规律,可为农业适应气候变化提供科学依据。通过构建代表站雨养冬小麦产量和土壤水分变化量的模拟方程,分析水分利用效率的历史变化,并结合两种区域气候模式 PRE-CIS 和 REGCM4.0 输出的4种不同气候变化情景资料,估算未来2021—2050年雨养冬小麦水分利用效率的可能变化。结果表明:1981—2010年甘肃、山西和河南代表站的雨养冬小麦水分利用效率呈二次曲线变化趋势,最大值出现在2003年前后。4种气候变化情景的模拟结果均显示:2021—2050年冬小麦全生育期耗水量明显增加,各代表站不同情景平均增加6.2%;产量有增有减,平均产量变化率为1.4%;水分利用效率平均减小3.8%,且变率减小。区域气候模式 PRECIS 估算的水分利用效率的减小量 A2 情景大于 B2 情景,REGCM4.0模式估算的水分利用效率的减小量 RCP8.5 情景大于 RCP4.5 情景。整体来看,RCP 气候情景对雨养冬小麦水分利用效率的负面影响更大。

关键词:雨养冬小麦;水分利用效率;区域气候模式;RCP情景

引 言

气候变化对农业产生影响已是不争的事实^[1], 冬小麦是我国重要的粮食作物,大量研究表明,气候 变暖背景下,我国冬小麦生产发生了各种有利或不 利的变化^[2-3],并可能在未来受到进一步影响^[4-6]。 在冬小麦主产的河南、甘肃、山西等地,存在灌溉条 件较差、甚至无灌溉条件的麦区,冬小麦生产以雨养 为主,对气候条件的依赖极大。探讨气候变化对雨 养冬小麦的影响规律,对于排除灌溉等人为因素干 扰,单纯分析气候条件改变对农业生产的影响规律 有重要意义。

雨养小麦的水分利用效率,直接受最终产量和 全生育期耗水量的影响,可反映自然条件下作物耗 水量与干物质生产及籽粒产量的关系,揭示初级生 产力与作物蒸散两个过程的耦合^[7-9],是农业生产适 应气候变化的重要指标之一。近年来,我国学者在 气候变化对小麦水分利用效率的影响研究针对产量 水平的居多^[10-13],成果主要分为两类,一是利用历史 资料统计,通过实测产量和推算的作物耗水量,计算 水分利用效率研究其影响因子和变化规律^[14-15],并 结合数理分析方法,研究水分利用效率对温度、降水 等因子的敏感程度^[16];二是通过开展田间试验,设 置不同的 CO₂ 浓度、温度梯度或水分条件,评价气 候变化影响下水分利用效率的变化^[17-18]。

在未来气候变化的影响预测方面,随着作物模型^[19]和区域气候模式^[20]的发展,诸多学者已对未来 冬麦区的产量给出了预测结论,但由于缺乏对作物 耗水量的推算,因此,关于未来气候变化条件下水分 利用效率的变化规律、主要影响因素等方面研究成 果鲜见报道。在各种区域气候模式中,英国 Hadley 气候中心开发的区域气候模式 PRECIS,可输出未 来气候变化情景下的逐日气象资料,是目前我国农业

²⁰¹⁴⁻⁰⁹⁻⁰³ 收到, 2015-02-11 收到再改稿。

资助项目:公益性行业(气象)科研专项(GYHY201106029)

^{*} email: rainwood2@163.com

气象领域研究应用最广泛的区域气候模式之一^[21]; REGCM4.0模式源自国际理论物理研究中心,模拟 RCP气候情景,即典型浓度路径(Representative Concentration Pathways,RCP),是新一代的温室气 体排放情景,更能满足气候变化影响评估需求和科 研针对性^[22-23]。本文利用 PRECIS 和 REGCM4.0 两种区域气候模式输出的4种不同气候变化情景数 据,估算气候变化对雨养冬小麦水分利用效率的影 响,为冬小麦提高水分利用效率和开展农业适应气 候变化研究提供参考。

1 资料和方法

1.1 资料

1.1.1 资料来源

本文选用无灌溉条件或灌溉条件较差的河南渑 池(34.77°N,111.77°E)、河南宜阳^[24](34.5°N, 112.18°E)、甘肃西峰(35.44°N,107.38°E)、甘肃天 水(34.35°N,105.45°E)及山西临汾(36.04°N, 113.00°E)为代表站。其中,西峰、天水冬小麦产量 (1981—2010年)源于该地区经相关部门审核后的 农业气象观测数据,其他代表站产量资料(1961— 2010年)源于各省统计年鉴。与产量资料对应时段 的历史气象资料源于国家气象信息中心数据库。

土壤含水量是计算作物实际耗水量的重要数据,本文获取的渑池站、宜阳站1995—2010年每月8日、18日、28日测定的10~50 cm 土壤逐层重量含水率源于河南省气象局;西峰站、天水站和临汾站土壤水分资料为1992—2010年每月8日、18日、28日测定的10~50 cm 土壤层的土壤相对湿度,源于中国气象科学数据共享服务网。

1.1.2 区域气候情景资料

为综合判断未来气候变化对雨养冬小麦水分利 用效率的影响,本文选用两种区域气候模式 PRE-CIS 和 REGCM4.0 输出的未来气候情景资料。 PRECIS模拟的 A2 情景为国内或区域资源情景,反 映区域性合作,对新技术适应较慢,人口继续增长; B2 情景为区域可持续发展情景,假定生态环境改善 具有区域性^[25],模型的输出量为基础情景(1961— 1990年)和未来的逐日气象资料,水平分辨率为 50 km×50 km。RegCM4.0 模式进行了 RCP4.5 情景和 RCP8.5 情景下的长期气候变化模拟,其中, RCP4.5 情景为 2100 年辐射强迫稳定在 4.5 W• m⁻², RCP8.5 情景为 2100 年辐射强迫上升至 8.5 W·m⁻²。RegCM4.0 的模拟输出量为基础情 景(1961—2005年)和未来的逐月平均资料,水平分 辨率为 0.5°×0.5°。

对格点化的区域气候模式资料,采用最近临法 插值到站点尺度。

1.2 雨养冬小麦气象产量模拟

针对各代表站产量资料特点,在指数、线性、对数、多项式等拟合方程中,选择与产量变化趋势相关 性最高的方程拟合冬小麦趋势产量,发现各代表站 均以三次多项式拟合相关系数最高。

- 渑池站: $Y_t = 0.001x^3 + 0.183x^2 + 62.7x + 186.1, R = 0.8814$ 。 (1)
- 宜阳站: $Y_t = 0.054x^3 4.097x^2 +$
- 154. 1x + 99.03, R = 0.8798。 (2) 西峰站: $Y_1 = 0.282x^3 - 15.04x^2 +$

$$289.4x + 779.6, R = 0.6017.$$
(3)

天水站:
$$Y_{t} = -1.16x^{3} + 34.91x^{2} - 100x^{2}$$

$$15.91x + 3296.0, R = 0.7483_{\circ}$$
 (4)

临汾站:
$$Y_t = -0.085x^3 + 5.617x^2 -$$

24. 50x + 847.7, R = 0.9000 (5)

其中, Y_t 为趋势产量,R为相关系数,式(1)、式(2) 中x为1961年开始的年代序数,式(3)、式(4)中x为1981年开始的年代序数,式(5)中x为1961年开 始的年代序数。从实际产量中减去趋势产量,即为 当年的气象产量。

根据前人的研究结果,热量资源和降水资源是 影响冬小麦气象产量的主要因子^[26-27],为了与气候 情景资料统一,对冬小麦气象产量与冬小麦生长季 的逐月温度和降水资料进行相关分析,气象要素包 括逐月最高气温 *T*_{max}(*i*)、最低气温 *T*_{min}(*i*)、平均气 温 *T*_{ave}(*i*);全生育期平均最高气温 *T*_{max}、最低气温 *T*_{min}和平均气温 *T*_{ave},逐月降水量 *P*(*i*)及全生育期降 水量 *P*,*i*表示月份,当*i*为9~12 时,代表的是上一 年的月份。筛选与气象产量相关系数较高的气象要 素,利用多元线性回归模型开展雨养冬小麦气象产量 模拟。根据各地冬小麦播种和收获时期,资料统计的 时段河南麦区为 10 月一次年 5 月,山西麦区为 10 月一次年 6 月,甘肃麦区为 9 月一次年 6 月。

1.3 作物耗水量的计算与模拟

由于土壤水分资料年代序列相对较短,本文利 用数理方法,将冬小麦耗水量资料反推至与产量资 料年代同步,以获取较长序列的相应数据,为开展气 候变化影响研究提供基础。

在雨养农区,一般水埋较深,地下水补给量可记为0,冬小麦生长季降水量一般不大,径流量可视为 0,渗漏量 L 也可忽略不计^[28-29],几乎无灌溉条件, 因此,土壤水分平衡方程可简化为

$$E_{\mathrm{T}} = W_1 - W_2 + P, \qquad (6)$$

式(6)中, $E_{\rm T}$ 为时段内的作物耗水量, W_1 为时段初 0~50 cm 深度的土壤含水量(单位:mm), W_2 为时 段末相同深度的土壤含水量(单位:mm),P为时段 内的有效降水量(单位:mm)。令 $\Delta W = W_1 - W_2$, W_1 和 W_2 分别为冬小麦播种前一旬和收获当旬的 土壤含水量, ΔW 即为全生育期土壤水分变化量。

式(6)中土壤含水量的计算参考下式[30]

$$W = \rho \times h \times v \times 10, \tag{7}$$

ρ为地段实测土壤容重(单位:g・cm⁻³),h为土层
 厚度(单位:cm),v为土壤重量含水率(单位:%)。

土壤相对湿度向重量含水率的转换可利用

$$v = r \times f_{\circ} \tag{8}$$

式(8)中,r为土壤相对湿度(单位:%),f为田间持 水量(用重量含水率表示)。

根据已有的土壤水分资料,可以计算出冬小麦 播种至收获期间的 ΔW ,而对于无观测资料的年份, 由于雨养麦区 ΔW 主要受降水补给和蒸发蒸腾消 耗的影响,在同一站点土壤类型和质地基本不变的 情况下,这些因素主要与气象因子密切相关^[31-32],因 此,与冬小麦气象产量模拟的方法相同,筛选出与 ΔW 相关性较高的气象因子,并建立多元回归模型, 可推算出无土壤水分资料年代的 ΔW 以及未来气 候变化情景下的 ΔW ,再与全生育期降水量累加,即 为作物耗水量的模拟值。

1.4 气候变化对冬小麦水分利用效率的影响估算 冬小麦水分利用效率用 U 表示^[11]:

$$U = Y/E_{\rm T}, \qquad (9)$$

式(9)中,Y为雨养冬小麦单产,E_T为冬小麦耗水量。

在区域气候模式资料可靠性检验的基础上,分 别利用未来 2021—2050 年,4 种气候变化情景资料 驱动冬小麦气象产量模型、土壤耗水量模型,从而计 算不同情景下的冬小麦气象产量、耗水量。

在比较水分利用效率变化情况时,将近 30 年 (1981-2010年)平均值作为比较对象,故将估算的 未来气象产量与近 30 年冬小麦平均趋势产量相加, 得到不同气候变化情景下的冬小麦估算产量。虽然 趋势产量恒定不变的假设与社会技术水平的发展趋 势不符,可能低估未来的冬小麦产量,但这种假设可 重点考虑气候条件的改变对冬小麦产量和水分利用 效率的影响,排除社会技术等气候变化影响分析的 干扰因素。

2 结果与分析

2.1 冬小麦气象产量模型构建

表1列出了与冬小麦气象产量相关系数较高的 气象因子及其多元回归模型系数,其中,渑池站、宜 阳站和临汾站的回归模型达到0.05显著性水平。 由表1可以看出,各代表站的冬小麦气象产量均与 降水量呈正相关关系。其中,河南、山西代表站冬小 麦气象产量与全生育期降水量的正相关显著,并主 要与冬小麦返青期(2月)和拔节一抽穗期(4月)降 水的正相关关系显著。在渑池、宜阳和临汾地区,越 冬前气温对气象产量的负影响显著,虽然冬前气温 偏高有利于分蘖增加和群体结构的扩大,但气温偏 低有利于冬小麦越冬锻炼和壮苗形成,并有利于春 化作用的进行。在西峰和临汾地区,气象产量还与 灌浆期(5月)气温呈负相关,这可能是气温过高导 致灌浆时间缩短造成的。

2.2 产量资料模拟的可靠性检验

利用区域气候模式的基础情景资料,分别驱动 表1中各代表站的气象产量模型,回代模拟历史气 象产量的变化,并将模拟结果与实际气象产量对比, 从而检验区域气候模式资料的适用性。根据各气候 情景资料的时段,以及冬小麦跨年生长的特性,PRE-CIS 气候情景资料与实际气象产量资料的交叉年 份,河南、山西代表站点为1962—1990年,甘肃代表 站为1981—1990年;REGCM4.0输出资料与实际 气象产量资料的交叉年份,河南、山西代表站点为 1962—2005年,甘肃代表站为1981—2005年。

由于气象产量本身变异性较大,利用两种气候 模式,大部分站点模拟的气象产量达到 0.1 显著性 水平。其中,PRECIS模式渑池站、宜阳站气象产量 模拟结果与实际产量相关性达到 0.05 显著性水平, REGCM4.0模式除天水站模拟效果相对较差以外, 其余各站的显著性水平均在 0.05 以上,由此模拟出

Table 1	Parameters of line	ar regression mod	el for meteorolog	ical yield of winte	er wheat at repres	entative stations
站点	时段	正相关因子	回归系数	负相关因子	回归系数	常数项
		P(1)*	0.802	$T_{\rm ave}(1)$ *	-47.09	
渑池	1961—2010 年	P(2) **	20.664	$T_{\min}(10)$ *	-41.798	-1144.5
		P^{**}	2.127	$T_{\min}(1)$ *	-32.458	
		${T}_{\max}$	9.202	$T_{\rm max}(11) **$	-59.177	
合四	1061 2010 年	P(1)	4.906			500 8
且旧	1901—2010 平	P(2) **	10.1			099.0
		P^*	1.546			
		$T_{\rm ave}(5)$	1018.696	$T_{\min}(5)$ *	-807.948	
西政	10.01 2010 年	P(10) **	9.274	$T_{\rm max}(5)$	-507.127	1049 9
L7 m末	1981—2010 平	P(2)	73.29			1043.3
		P(5) **	1.084			
		$T_{\min}(9)$	21.319			
		$T_{\min}(1)$	176.754			
エル	1081—2010 年	$T_{\rm max}(6)$	125.673			- 1085 0
入小	1981-2010 4	P(1)	78.789			4005.9
		P(2)	55.977			
		P(4)	18.353			
		P(4)*	2.805	$T_{\rm ave}(5)$ *	-79.409	
山をいい	1961—2010 年			$T_{\rm max}(10)$ *	-94.758	2017 810
响衍				$T_{\max}(4)$ *	-23.005	3917.010
				$T_{\rm max}({\rm all})^*$	-32.565	

表 1	代表站冬小麦气象产量线性回归横型参数
~ 1	

注:*表示达到 0.05 显著性水平,**表示达到 0.01 显著性水平。

的冬小麦单产均达极显著水平(表 2)。因此,利用 区域气候模式与气象产量模拟模型相结合的方法, 可以较合理的估计冬小麦产量,用这种方法估算未 来冬小麦产量变化是可行的。

	Table 2	Correlation coefficie	ent for yield simulation	
气候模式	站点	变量数	气象产量	单产
	渑池	29	0.4217 *	0.8587 **
	宜阳	29	0.3551*	0.9040 **
PRECIS	西峰	10	0.4869	0.7565 **
	天水	10	0.2223	0.3334
	临汾	29	0.3169	0.8730 **
	渑池	44	0.4058**	0.8493**
	宜阳	44	0.3611*	0.8506 **
REGCM4.0	西峰	25	0.3840*	0.6181 **
	天水	25	0.2934	0.7892**
	临汾	44	0.3049*	0.9014 **

表 2 代表站产量模拟相关系数

注:* 表示达到 0.05 显著性水平,** 表示达到 0.01 显著性水平。

2.3 土壤水分变化量模拟模型

表 3 列出了各代表站与 ΔW 相关系数较高的气象因子及多元回归模型参数,其中,宜阳站回归模型达到 0.01 显著性水平,其余站点回归模型达到 0.05 的显著性水平。可以看出,各站 ΔW 与降水量以负相关关系为主,尤其是抽穗灌浆成熟期间(4—6月),降水量越大, ΔW 的变化量越小,即降水量较大时,作物的水分利用主要源于降水,对土壤中储存的

水分消耗较小。平均温度在一定范围内升高加剧土 壤水分蒸发和作物蒸腾,尤其在冬小麦生长旺盛期 更为明显,大部分站点 ΔW 与 5 月或 6 月平均气温 呈显著正相关,临汾站 ΔW 还与 T_{max} (6)呈显著负 相关,这可能是温度过高导致叶片气孔关闭,蒸腾作 用减弱。由于土壤水分资料与区域气候模式资料基 本无交叉,因此没有开展区域气候模式对 ΔW 的模 拟检验。

表 3 代表站冬小麦全生育期土壤水分变化量线性回归模型参数

Table 3 Parameters of linear regression model for soil water variation of

the whole	growing season	of winter	wheat at a	representative stations	

站点	时段	正相关因子	回归系数	负相关因子	回归系数	常数项
		$T_{\rm ave}(5)$ *	13.076	P(3)	-0.453	
渑池	1961—2010 年	$T_{\min}(11)$	0.390	P(4) **	-0.778	-187.329
		P(5)	0.322	P(all)*	-0.181	
-		$T_{\rm ave}(4)$	3.822	P(4) **	-0.175	
合四	1001 2010 45	$T_{\rm ave}(5) **$	6.312	P(5)	-0.076	140 046
<u>.</u> E. 14	1901—2010 平	T(all)	2.895			-149.940
		$T_{\min}(12)^{**}$	10.321			
		$T_{\rm ave}(10)$	20.835	$T_{\rm max}(10)$ *	-7.138	
西峰	1981—2010 年	P(10) **	0.867	$T_{\rm max}(5)$	-4.543	21.011
		P(2)*	1.244	P(5)*	-0.634	
		$T_{\rm ave}(6) **$	0.627	$T_{\min}(4)$	-9.135	
天水	1981—2010 年	P(1) *	3.242	P(9)	-0.058	-155.832
		$T_{\rm ave}(9)$	12.474			
临汾		$T_{\rm ave}(6)$ *	109.948	$T_{\min}(11) *$	-9.052	
	1961—2010 年	$T_{\rm max}(5)$	5.587	$T_{ m max}$ (6) *	-81.384	-268.412
		P(11) *	2.581	P(6)	-0.464	

注:*表示达到 0.05 显著性水平,**表示达到 0.01 显著性水平。

2.4 气候变化对水分利用效率的影响

2.4.1 水分利用效率的历史变化

1961—2010 年渑池、宜阳、临汾地区雨养冬小 麦平均单产呈三次多项式曲线变化(达到 0.01 显著 性水平),1981 年以前产量增幅较稳定,之后年际间 波动增大(图 1a);冬小麦耗水量年际变化规律不显 著,且年际间波动大(图 1b);水分利用效率的变化 接近于幂函数(达到 0.01 显著性水平),20 世纪 80 年代以前稳定、快速增加,从 60 年代平均为 3.1 kg・ mm⁻¹・hm⁻²增长到了 80 年代平均为 10.0 kg・ mm⁻¹・hm⁻²,随后水分利用效率呈波动式增长趋势,21 世纪平均为 13.9 kg・mm⁻¹・hm⁻²,增长速 度较前期略减缓(图 1c)。

图 1 渑池站、宜阳站、临汾站雨养冬小麦平均产量(a)、 平均耗水量(b)及平均水分利用效率(c)的年际变化

续图 1

从 5 个站 1981—2010 年平均结果看,近 30 年 雨养冬小麦产量按三次多项式曲线变化(达到 0.01 显著性水平),21 世纪以前增长速度较快(图 2a);冬 小麦实际耗水量也呈波动式增长趋势(达到 0.05 显 著性水平)(图 2b)。冬小麦单产变异系数(23.5%)高 于实际耗水量变异系数(16.6%),这决定了雨养冬小 麦的水分利用效率必然也存在较大波动。

雨养冬小麦水分利用效率平均值从大到小,依次为甘肃代表站(13.19 kg•mm⁻¹•hm⁻²)、山西 代表站(12.86 kg•mm⁻¹•hm⁻²)、河南代表站 (11.28 kg•mm⁻¹•hm⁻²)。各代表站平均水分利 用效率值按一元二次曲线变化(达到 0.01 显著性水 平),变异系数为 23.7%,极大值出现在 2003 年前 后,2003 年以后有略减趋势(图 2c)。

图 2 代表站雨养冬小麦平均产量(a)、 平均耗水量(b)及平均水分利用 效率(c)的年际变化

Fig. 2 Annual variation of average value of yield(a), water consumption(b) and water use efficiency(c) of rain-fed winter wheat for representative stations

2.4.2 气候变化对水分利用效率的影响

与1981—2010年平均值相比,估算的2021—2050年冬小麦全生育期耗水量表现为不同程度的增加(图3a),各地、各情景平均增加6.2%。PRE-

CIS模式模拟,耗水量的增幅 A2 情景(7.2%)大于 B2 情景(3.2%),REGCM4.0 模式模拟,耗水量增幅 RCP8.5 情景(9.4%)大于 RCP4.5 情景(5.1%); RCP 情景模拟的平均耗水增量(7.2%)高于A2

情景和 B2 情景模拟的平均增量(5.2%)。其中,渑 池站和天水站在 A2 情景和 RCP8.5 情景下耗水量 增加相对较多,表明这些地区未来 30 年气候资源变 化可能较其他地区更明显,雨养冬小麦生产也将受 到较显著影响。

预计 2021—2050 年各地产量与 1981—2010 年 平均值相比有增有减,不同情景下各地平均产量变 化率为 1.4%(图 3b)。A2 和 B2 情景下,渑池、西 峰和临汾地区平均减产 3.6%,0.4%和 4.5%,且减 产率 A2 情景大于 B2 情景;而宜阳和天水地区则分 别平均增产 4.9%和 3.2%,且增产率 B2 情景大于 A2 情景;RCP 的两种情景下,渑池和临汾地区分别 平均减产 2.3%和 2.0%,且减产率 RCP4.5 情景大 于 RCP8.5 情景,宜阳、西峰和天水地区则分别增产 0.3%,12.6%和 5.9%,增产趋势为 RCP8.5 情景 大于 RCP4.5 情景。大部分站点 RCP 情景模拟的 冬小麦产量高于 A2 情景和 B2 情景。

由图 3c 可以看出,除渑池站 B2 情景以及西峰 站所有情景水分利用效率的估算值略增外,各地区 雨养冬小麦水分利用效率均有不同程度减少,平均 减少率为 3.8%,其中,A2 情景和 B2 情景平均,渑 池站、宜阳站、天水站及临汾站的水分利用效率分别 减少 4.4%,3.6%,4.4%和 11.2%,且减少率 A2 情景大于 B2 情景;RCP 的两种情景下上述 4 个代 表站则分别平均减少 9.3%,1.6%,6.2%和 14.8%,减少率 RCP8.5 情景大于 RCP4.5 情景。 由上面的分析可知,气候变化对雨养冬小麦单 产的影响存在差异,估算的未来冬小麦产量整体变 化幅度不大,但水分利用效率减小,且个别地区减幅 较大,耗水量增加是主要原因。根据两种区域气候 模式的预测,2021—2050年各代表站冬小麦生长发 育的不同时期温度均有不同程度增加,将进一步加 剧植株的水分蒸腾及田间土壤水分消耗;同时,区域 气候模式输出的不同情景下的部分区域的降水量也 有一定程度增加,因此,冬小麦耗水量呈增加趋势。 2.4.3 未来气候变化背景下水分利用效率的年际

变化及变率

从各代表站平均的未来水分利用效率年际变化 曲线(图 4)看,利用 REGCM4.0 模式输出的气候资 料,水分利用效率的平均值随年际变化显著递减(达 到 0.05 显著性水平),表明 RCP 情景下,不仅水分 利用效率的平均值较 1981—2010 年减小,水分利用 效率受到的负影响存在逐年加剧的趋势;而 A2 情 景和 B2 情景资料估算的水分利用效率年际变化表 现为不显著的递增趋势,表明 RCP 情景比 A2 情景、 B2 情景对雨养冬小麦水分利用效率的负影响更大。

2021—2050 年各代表站 4 种气候情景下的水 分利用效率存在较大的年际间波动,但与 1981— 2010 年相比,这种波动随水分利用效率估算值的减 小而减小(表 4),各代表站平均变异系数 A2 情景大 于 B2 情景,RCP4.5 情景大于 RCP8.5 情景,且 A2 情景和B2情景输出的水分利用效率平均变率大于

图 4 不同气候模式输出的未来水分利用效率年际变化(直线代表变化趋势)

Fig. 4 Annual variation of water use efficiency by different climate models in the future(straight lines denote trends)

表 4	專	「养冬小麦水分利用效率的变异系数(单位:%)
Table 4	4	Variable coefficient of water use efficiency for

rain-fed winter wheat(unit:%)							
情景	渑池站	宜阳站	西峰站	天水站	临汾站		
A2	27.12	23.49	23.12	31.18	21.86		
B2	30.39	17.49	23.90	34.55	11.63		
RCP4.5	20.86	21.43	28.55	26.35	18.13		
RCP8.5	14.93	23.33	23.91	23.51	24.23		
	11.00	20.00	20.01	20.01	21.20		

RCP 情景,由于雨养冬小麦对气候条件的依赖性很强,表明 RCP 情景的气候波动性较 A2 情景、B2 情景小,雨养冬小麦对水分的利用相对稳定。

3 结论和讨论

1) 渑池站、宜阳站和临汾站 1961—2010 年水 分利用效率接近幂函数增长,5个代表站 1981— 2010年的平均水分利用效率呈二次曲线变化,最大 值出现在 2003年前后。与 1981年以前相比, 1981—2010年水分利用效率的年际间波动性明显 增大。

2)两种区域气候模式、4种气候变化情景的估算结果均表明:2021—2050年气候变化导致雨养麦 区耗水量增加,水分利用效率进一步降低,未来耗水 量的增加是水分利用效率减小的主要原因,同时,水 分利用效率的变异系数减小。

3)4种气候变化情景相比较,水分利用效率的 减小量 A2 情景大于 B2 情景,RCP8.5 情景大于 RCP4.5 情景。从水分利用效率的减小幅度和年际 变化趋势综合比较,RCP 情景比 A2 情景、B2 情景 对雨养冬小麦水分利用效率的负面影响更大,但 RCP 情景下水分利用效率的年际间波动相对较小。

本文在估算未来气候变化对水分利用效率的影 响时,未考虑冬小麦品种的更替及冬小麦生产对气 候变化的自适应过程,因此,可能低估未来雨养冬小 麦的产量及对水分的吸收利用,同时,由于土壤水分 资料较少,耗水量的计算还存在一些不确定因素。 另一方面,未来气候变化对农业的影响估算,很大程 度上依赖于气候变化情景资料,因此,利用不同的区 域气候模式,可能会得出一些差异性的结论。实际 上,气候变化对作物水分利用效率的影响是多因素 的,从作物产量水平上看,多数研究结果表明,植物 水分利用效率与降水量呈负相关,但随着水分限制 条件的进一步加强,植物水分利用效率逐渐升高至 一定水平后下降^[33],同时,热量条件、CO₂浓度等环 境条件的改变也会使作物产量和耗水规律发生相应 变化^[34],因此,气温、降水、CO₂的协同作用对冬小 麦水分利用效率的影响是一个系统而复杂的问题, 水分利用效率的变化阈值、变化规律、决定性因子等 方面仍有较大的探索空间。从本文估算的未来雨养 冬小麦水分利用效率可能降低的结论看,水分利用 效率降低的主要原因是气候变化导致未来冬小麦耗 水量进一步增加,要改善水分利用效率降低的状况, 应以提高冬小麦单产为主要目标,在气候条件无法 改变的情况下,可通过变更种植品种、改变密度和种 植方式等措施,减少无效水分消耗,提高冬小麦产量 及水分利用效率。

致 谢:感谢国家气候中心提供的利用区域气候模式所进行的中国 区域未来气候变化模拟结果。

参考文献

- [1] 刘桂芳,卢鹤立.全球变暖背景下的中国西部地区气候变化研 究进展.气象与环境科学,2009,32(4):69-73.
- [2] 王馥棠. 近十年来我国气候变暖影响研究的若干进展. 应用气 象学报, 2002, 13(6):755-766.
- [3] 王建英,韩相斌,王超,等.豫东北主要农作物对气候变暖的响 应.气象与环境科学,2009,32(1):43-46.
- [4] 居辉,熊伟,许吟隆,等. 气候变化对我国小麦产量的影响. 作 物学报,2005,31(10):1340-1343.
- [5] 田展,刘纪远,曹明奎. 气候变化对中国黄淮海农业区小麦生 产影响模拟研究. 自然资源学报,2006,21(4):598-607.
- [6] 刘月岩,刘会灵,乔勾周,等. CO₂ 浓度升高对不同水分条件 下冬小麦生长和水分利用的影响.中国生态农业学报,2013, 21(11):1365-1370.
- [7] 郭安红,刘庚山,安顺清,等.有限供水对冬小麦根系生长发育 的影响及其对底墙的利用特征.应用气象学报,2002,13(5): 621-626.
- [8] 张丛志,张佳宝,赵炳梓,等.作物对水分胁迫的响应及水分利 用效率的研究进展.节水灌溉,2007(5):1-6.
- [9] 赵鸿,杨启国,邓振镛,等.半干旱雨养区小麦光合作用、蒸腾 作用及水分利用效率特征.干旱地区农业研究,2007,25(1): 125-130.
- [10] 罗俊杰,黄高宝.底墒对旱地冬小麦产量和水分利用效率的影

响研究.灌溉排水学报,2009,28(3):102-104;111.

- [11] 李俊,于沪宁,刘苏峡.冬小麦水分利用效率及其环境影响因 素分析.地理学报,1997,52(6):552-560.
- [12] 董宝娣,师长海,乔匀周,等.不同灌溉条件下不同类型冬小麦 产量水分利用效率差异原因分析.中国生态农业学报,2011,9 (19):1096-1103.
- [13] 惠海滨,林琪,刘义国,等.灌水量和灌水期对超高产小麦灌浆 期光合特性及产量的影响.西北农业学报,2012,21(8):77-83.
- [14] 董浩,陈雨海,周勋波.灌溉和种植方式对冬小麦耗水特性及 干物质生产的影响.应用生态学报,2013,24(7):1871-1878.
- [15] 臧贺藏,刘云鹏,余鹏,等.水氮限量供给下两个高产小麦品种物质积累与水分利用特征.麦类作物学报,2012,32(4):689-695.
- [16] 姚玉璧,王润元,杨金虎,等.黄土高原半湿润区气候变化对冬 小麦生育及水分利用效率的影响.西北植物学报,2011,31 (11):2290-2297.
- [17] 俞满源,黄占斌,山仑.不同水分条件下 CO₂ 浓度升高对植物 生长及水分利用效率的影响.中国生态农业学报,2003,11 (3):110-112.
- [18] 王美玉,赵天宏,张巍巍,等. CO₂ 浓度升高与温度、干旱相互 作用对植物生理生态过程的影响.干旱地区农业研究,2007, 25(2):99-103.
- [19] 熊伟. CERES-Wheat 模型在我国小麦区的应用效果及误差来 源. 应用气象学报,2009,20(1):88-94.
- [20] 石英,高学杰,吴佳,等.华北地区未来气候变化的高分辨率数 值模拟.应用气象学报,2010,21(5):580-589.
- [21] 王培娟,张佳华,谢东辉,等. A2 和 B2 情景下冀鲁豫冬小麦 气象产量估算.应用气象学报,2011,2(5):549-557.
- [22] Gao X J,Shi Y,Zhang D F,et al. Climate change in China in

the 21st century as simulated by a high resolution regional climate model. *Chinese Science Bulletin*, 2012, 57(10): 1188-1195.

- [23] Gao X J, Shi Y, Song R Y, et al. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. *Meteorology and Atmospheric Physics*, 2008, 100:73-86.
- [24] 朱自玺,刘荣花,方文松,等.华北地区冬小麦干旱评估指标研 究.自然灾害学报,2003,12(1):145-150.
- [25] 许吟隆.应用 Hadley 中心 RCM 发展中国高分辨率区域气候 情景. 气候变化通讯,2004,3(5):6-8.
- [26] 钱锦霞,郭建平.郑州地区冬小麦产量构成要素的回归模型. 应用气象学报,2012,23(4):500-504.
- [27] 陈怀亮,张雪芬,赵国强,等.河南省春季气候变化及其对小麦 产量构成要素的影响.气象与环境科学,2006(1):47-52.
- [28] 蒲金涌,冯建英,姚晓红,等.甘肃黄土高原土壤农业水分常数 分布特征.干旱地区农业研究,2005,26(3):205-209.
- [29] 方文松,陈怀亮,李树岩,等.南阳市土壤湿度与气候变化的关 系分析.气象与环境科学,2007,30(4):13-16.
- [30] 国家气象局. 农业气象观测规范(上卷). 北京:气象出版社, 1993.
- [31] 蒲金涌,王润元,王鹤龄,等.甘肃陇东黄土高原陆面实际蒸散 测算方法比较研究.土壤通报,2014,45(1):32-38.
- [32] 杨娜,刘良明,向大享,等.由常规地面气象观测要素估算土壤 湿度.华中师范大学学报,2010,44(3):527-530.
- [33] 周洁,张志强,孙阁,等.不同土壤水分条件下杨树人工林水分 利用效率对环境因子的响应,生态学报,2013,33(5):1465-1474.
- [34] 王庆伟,于大炮,代力民,等.全球气候变化下植物水分利用效 率研究进展.应用生态学报,2010,21(12):3255-3265.

Estimation of Climate Change Effects on Water Use Efficiency of Rain-fed Winter Wheat

Cheng Lin¹⁾²⁾ Fang Wensong¹⁾²⁾

¹⁾ (CMA Key Laboratory of Agrometeorological Ensuring and Applied Technique, Zhengzhou 450003) ²⁾ (Henan Institute of Meteorological Sciences, Zhengzhou 450003)

Abstract

Investigating the influencing rule of climate change on water use efficiency (WUE) of rain-fed winter wheat can offer scientific reference for agriculture adapting to climate change. Based on yield information and observed soil water data at representative stations, the historical trend of WUE is analyzed. Simulation models for meteorological yield and soil water variation quantity are established, and four different kinds of climate change scenarios, which are outputs by regional climate models of PRECIS and REGCM 4.0 are combined to estimate the probable variation trend of WUE in the future years of 2021-2050 for rain-fed wheat. It is validated that in the basic scenario years, simulated yields by the combination of two regional climate models with meteorological yield simulation model are close to actual values, so methods for estimating future yield of wheat is proved feasible. Results by data analyzing shows that the average yield for representative stations varies as a cubic curve during the last 30 years of 1981-2010, and grows faster before the year of 2000. Water consumption of wheat also increases with fluctuating. The average WUE value of rain-fed wheat for representative stations in Gansu, Shanxi and Henan are 13.19 kg \cdot mm⁻¹ \cdot hm⁻², 12.86 kg • mm⁻¹ • hm⁻² and 11.28 kg • mm⁻¹ • hm⁻², respectively. The varying trend of WUE is similar to a quadratic curve, and the maximum value appears in the year of 2003. Estimation results under four different climate change scenarios shows that in 2021-2050, water consumption of winter wheat would increase dramatically, and the increasing amount could reach to 6.2% for all the representative stations and all scenarios averagely. Yields in the future would decrease and some increase, and the variation rate would be 1.4% on average. The value of WUE would decrease 3.8% on average, meanwhile, the variability rate would also decrease. The increase of water consumption would be the main cause for WUE decreasing in the future. From the inter-annual variation during 2021-2050, WUE would show a non-significant trend of increasing under the simulation of PRECIS model, and comparing to the average value of 1981-2010, the decreasing rate of WUE would be more significant under A2 scenario than B2. However, there would be a significant decline trend for WUE simulated by REGCM4.0 model, and under the scenario of RCP8.5, the reduced value of WUE would be higher than that of RCP4.5. Generally speaking, the climate scenario of RCP has even more negative effects on WUE of rain-fed wheat.

Key words: rain-fed winter wheat; water use efficiency; regional climate model; RCP scenario