陈峰,袁玉江,魏文寿,等. 树轮记录的贺兰山北部近 208 年 5-7 月温度变化.应用气象学报,2011,22(4):463-471.

树轮记录的贺兰山北部近 208 年 5-7 月温度变化

陈 峰 袁玉江* 魏文寿 张同文 张瑞波

喻树龙 范子昂 李 杨 尚华明

(中国气象局乌鲁木齐沙漠气象研究所中国气象局树木年轮理化研究重点实验室 新疆维吾尔自治区树木年轮生态重点实验室,乌鲁木齐 830002)

摘 要

利用 2008 年 10 月采自贺兰山北部的油松树轮样本建立了贺兰山北部区域树轮密度年表。相关分析表明:贺 兰山北部的树轮早材平均密度与银川气象站 5—7 月平均最高温度具有较好的正相关关系,相关系数为 0.67。用 贺兰山北部的区域早材平均密度差值年表重建贺兰山北部 1801—2008 年的 5—7 月平均最高温度,58 年(1951— 2008 年)重建值对实测值的解释方差为 44.9%;2008 年的贺兰山北部温度重建序列平均值为 27.40°C。在最近 20 年,贺兰山树轮早材平均密度出现了明显的上升趋势,通过比对贺兰山北部重建序列的低温年份和全球火山爆发 数据,发现在大规模火山爆发后的 28 个偏冷年温度平均值为 26.90°C,较重建序列平均值下降 0.50°C。多窗谱分 析表明:贺兰山北部温度重建序列具有 120 年、8.1 年、6.5 年、3.2 年、2.9 年、2.1 年的准周期变化。贺兰山北部早 材平均密度与甘肃石门山、昌灵山油松的早材平均密度有良好的相关性。 关键词:贺兰山;树木年轮;油松;早材平均密度;5—7 月温度

引 言

树木年轮以其定年准确、连续性好、分辨率高等 优势成为全球变化研究中获取过去气候环境演变数 据的重要来源。树轮密度研究作为树轮研究的重要 组成部分,能够获取到树轮宽度所不能获取的气候 信息,国际上利用树轮密度恢复过去气候变化尤其 是温度变化,取得了大量成果^[1-10]。国内的树轮密 度研究在近些年也取得了很大进步,Fan等利用树 轮晚材最大密度重建了横断山区中部历史温度变 化^[11],Wang等利用树轮晚材最大密度重建了西藏 东部地区 8—9月的温度变化^[12],王丽丽等对漠河 树轮密度的气候响应进行了研究^[13],Chen等利用 树轮晚材密度重建了伊犁地区 4—8月的温度变 化^[14],袁玉江等对天山西部上树线的最大密度年表 的气候信号进行了分析^[15],刘禹等利用油松树轮密 度重建了陕西黄陵地区季节温度和降水^[16]。中国 气象局树木年轮理化研究重点实验室引进国内第1 台 Dendro2003 树轮密度分析系统,成为国内首家具 备进行 X 光树轮密度研究条件的实验室。

贺兰山北部地区位于东亚季风区西北边缘和沙 漠黄土交界带上,气候干旱,降水稀少。刘禹等在贺 兰山地区对油松年轮宽度和同位素进行了大量研 究,取得了很多成果^[17-20],但对于利用贺兰山油松密 度重建温度研究并未见报道。本研究基于在贺兰山 北部地区采集的油松树轮样本,研制出区域密度年 表,分析树轮密度与气候要素之间的关系,重建贺兰 山北部地区历史时期气候要素的变化,并分析其变 化规律。

1 材料与方法

树轮样本采自贺兰山北部苏峪口、北寺、南寺、

²⁰¹⁰⁻⁰⁶⁻¹⁷ 收到, 2011-04-15 收到再改稿。

资助项目:科技基础性工作专项(2007FY220200),公益性行业(气象)科研专项(GYHY200806011),国家自然科学基金项目(40975056, 41071072,40890051),中国沙漠气象科学研究基金(SQJ2010011),中央级公益性科研院所基本科研业务费项目(IDM200801)

^{*} 通信作者, E-mail: yuanyuj5502@sina.com

大西沟,采集时间为 2008 年 10 月。4 个采样点的 树木生长的立地条件都比较差,油松为这 4 个采样 点的优势树种,此外,还参杂生长了青海云杉和山 杨。采样点布局上,除遵循树木树轮气候学采样点 选择基本原理外,还考虑到空间和坡向分布等因素 (图 1 和表 1)。采样树种为油松,使用生长锥 (5 mm和 12 mm)在树的胸高位置采集 3 个样芯(2 根细样芯和 1 根粗样芯),最后共采集了 90 棵树 180 个细样芯和 90 个粗样芯。

依照树轮样本处理的基本程序,首先对所采细 样芯进行干燥、固定、磨光,用精度为 0.001 mm 的 Velmex 轮 宽 量 测 仪 进 行 轮 宽 测 量。利 用 COFECHA 程序对细样芯定年结果进行检验^[21]。 粗样芯处理步骤如下:①将粗样芯放入水温为80℃

表 1 树轮采样点概况 Table 1 Survey of the sampled sites of tree rings

采样点	树种	海拔/m	坡向	坡度/(°)	纬度	经度	样本量
苏裕口	油松	$2260 \sim 2320$	EEN	$25\!\sim\!45$	38°44′N	105°55′E	44
北寺	油松	$2205\!\sim\!2210$	NNW	$25 \sim 30$	38°58′N	$105^{\circ}55'E$	52
大西沟	油松	2100	NNE	35	38°59′N	105°57'E	44
南寺	油松	$2240 \sim 2280$	EEN	$19\!\sim\!25$	38°41′N	105°50′E	40

的恒温水箱内48h,进行脱糖、脱脂处理;②将粗样 芯按照3 cm 的长度前后两端呈梯形斜切分段固定, 对每个分段样芯的两端进行木材纤维角度的量取 (当两端的角度差大于 2°时,应该在中间合适位置 再量取角度,以便进行多次切割);③ 使用 Dendrocut-2003 切片机,按照测量好的纤维角度,将每一棵 圆柱形的样芯加工成与取样方向平行、厚度1.0± 0.02 mm 的片状样本供 X 射线照射使用。切割完 毕以后,用精度为 0.001 mm 的电子千分尺对每个 样本进行测量厚度,最终将在同一张胶片上成像的 样本厚度取一个均厚度值(油松样本在进行厚度测 量之前,还应放入索式提取器中用酒精萃取48h进 行二次萃取以保证没有杂质残留);④将柯达工业 胶片位于样本下面,放入 Dendroxray-2 封闭式系统 中,将照射条件设定为电压 V=9 kV,电流 J=20 mA,时间 T=30 min,最后在暗房中用事先配制 好的冲洗液冲洗胶片;⑤ 用 Dendro2003 树轮密度 分析系统获得逐年树轮宽度(TRW)、早材宽度 (EWW)、晚材宽度(LWW)、早材平均密度(EWD)、 晚材平均密度(LWD)、最小密度(MID)和最大密度 (MXD) 共7种树轮指数^[22-23]。利用 SELTOTUC 程序对存储数据的 SEL 文件进行数据分类提取。 结合 COFECHA 程序交叉定年质量检验,利用 Dendro2003 树轮密度分析系统对密度数据进行定 年校正。逐一打印树轮宽度曲线和最大密度曲线, 删除由于切割等原因造成树轮最大密度值异常减小 的区间。密度树轮年表的建立是利用 ARSTAN 程 序完成的[24]。为了提取区域气候信号,将完成定年 的4个采点的粗样芯宽度和密度数据按照类别放入 一个文件进入 ARSTAN 程序。对树轮宽度和密度采 用负指数函数、直线、50年的样条函数在内的多种趋 势方法进行生长趋势拟合,发现利用 hugershoff 生长 曲线进行生长趋势拟合所得到的结果最好,所以选用 hugershoff 生长曲线进行生长趋势拟合,以双权重平 均法将去趋势序列合并成树轮宽度及密度指数序列, 最终建立了树轮宽度和密度的标准化年表(STD)、差 值年表(RES)和自回归年表(ARS)^[25]。基于粗样芯 的树轮宽度和密度数据所建立的年轮宽度和密度年 表的统计特征见表 2。在交叉定年和年表研制过程 中,利用已经完成交叉定年的大样本的细样芯宽度数 据对粗样芯宽度和密度数据进行辅助定年,以提高定 年准确性。以树轮宽度和密度年表的样本总解释量 (EPS)^[26]大于 0.8 的起始年 1801 年定为起点,重建 贺兰山北部历史气候变化。

4	\sim	_
4	h	5
	S	0

Table 2 Tree-ring residual chronologies statistics in the north part of Helan Mountains							
年表名称	平均敏感度	标准差	相关性	信噪比	样本总解释量	第1特征向量百分比/%	一阶自相关系数
年轮宽度	0.322	0.349	0.359	8.946	0.899	42.7	0.29
早材宽度	0.364	0.386	0.367	9.286	0.903	43.6	0.27
晚材宽度	0.282	0.301	0.196	3.903	0.796	29.7	0.27
早材平均密度	0.046	0.047	0.255	5.479	0.846	33.1	0.06
晚材平均密度	0.049	0.058	0.223	4.591	0.821	30.7	0.34
早材最小密度	0.058	0.056	0.252	5.379	0.843	32.0	-0.06
晦 材 最 大 家 西	0.055	0.062	0 238	4 987	0.833	32 0	0.29

表 2 贺兰山北部综合差值年表主要统计特征

在进行与气候要素的相关分析前,首先对宽度 和密度年表进行相关分析(所选年份为1801-2008 年,共208年)。

宽度年表相关分析表明:早材宽度与晚材宽度 的相关系数为0.69,早材宽度和年轮宽度的相关系 数为0.98,晚材宽度和年轮宽度的相关系数为0.77, 可以看出,3种树轮宽度指标之间具有显著的相关 性。

密度年表相关分析表明:晚材最大密度年表与 晚材平均密度年表之间有很高的相关性,相关系数 达到 0.96;对应地,早材最小密度年表与早材平均 密度年表之间也有很高的相关性,相关系数达到 0.94。同时早材平均密度年表、早材最小密度年表 与晚材平均密度年表、晚材最大密度年表之间都具 有一定的相关性。

基于以上分析,在重建气候序列时,应该避免在 同一方程中使用相关性过高的树轮数据,但多种树 轮数据的使用较单一使用树轮宽度数据大大提高了

树轮气候信息的含量。

2 气象资料选取及树轮密度的气候响应

选取采点附近最大的城市银川的月降水量、月 平均温度、月平均最高温度、月平均最低温度资料 (1951-2008年)。将密度年表与银川月降水量、月 平均温度、月平均最高温度、月平均最低温度分别做 相关分析(表 3)发现,① 早材平均密度、早材最小 密度与 3-7 月平均温度和平均最高温度存在显著 正相关性,而与 5-6 月降水量存在显著负相关;② 晚材平均密度、晚材最大密度与降水量、温度的相关 性都比较差。从图 2 中可以看出,树轮早材平均密 度差值年表与 5-7 月的单月平均最高温度都具有 较好的相关性(达到 0.01 的显著性水平),其中以 6 月平均最高温度与树轮早材平均密度差值年表为最 高,相关系数为 0.50(达到 0.01 的显著性水平)。

Table 3 Summary of the significant response function coefficients											
气象要素	树轮密度	1月	2月	3月	4月	5 月	6月	7月	8月	9月	10月
	早材平均密度			0			0	0			
亚构泪座	晚材平均密度										
十均価度	早材最小密度			0			0	\bigcirc			
	晚材最大密度										
亚坎县立泪庇	早材平均密度			0		0	0	0			
	晚材平均密度										
丁玛取问僵皮	早材最小密度			\bigcirc		\bigcirc	\bigcirc	\bigcirc			
	晚材最大密度										
	早材平均密度							0			
亚均具任泪南	晚材平均密度					0					
十圴取區面反	早材最小密度							0			
	晚材最大密度					0					
降水量	早材平均密度					۲	۲				
	晚材平均密度					0					
	早材最小密度					•	•				
	晚材最大密度					\bigcirc	0				

表 3 树轮密度与气候要素的响应分析

注:○与○表示正相关,●表示负相关;○与●表示超过 0.01 显著性水平,○表示超过 0.05 显著性水平。

maximum temperature records

为进一步了解树轮密度与气候要素之间的响应 关系,取当年1-10月降水量、温度各种顺序组合, 与树轮密度年表进行了相关普查,发现树轮早材平 均密度差值年表与5-7月的月平均最高温度的相 关性最高,相关系数为0.67(达到0.01的显著性水 平)。

在北美和欧洲,大多数的树轮密度研究[1-8]发 现,晚材最大密度、晚材平均密度与温度变化有很大 关系,对于早材最小密度和早材平均密度对气候响 应却不明显。但根据一些树轮密度研究[6,9,27-29]发 现,早材密度与生长季中前期温度有良好的响应,在 Xiong 等的研究中树轮早材密度对气候响应甚至优 于晚材密度^[9]。对天山上树线的雪岭云杉和布克赛 尔的西伯利亚落叶松的树轮密度的研究中发现,早 材平均密度对于生长季前中期的温度也有较好的响 应。在干旱区树木生长过程中,水分条件对树木生 长有决定性影响,同时生长季的高温也对树轮密度 有重要影响。树轮的形成主要是依靠树轮形成层细 胞的分裂、伸长和加厚。5-8月是贺兰山树木宽度 生长的主要时期[30],5-7月又是油松生长最为活 跃的时段,从树轮形成层分裂出来的细胞的拉伸生 长占据主导,而此时贺兰山北部却十分干旱,以银川 站为例,5-7月降水占全年的42%,但是银川气象 站的年均降水仅为191.5 mm,即使是贺兰山高山 气象站的年平均降水量也仅为 425 mm^[20]。此外, 采点的土层薄,土壤储水能力有限,也会加剧干旱对 树木生长的胁迫。5-6月降水多,能够改善土壤的 水分,为早材生长提供充足的水分,使早材细胞拉伸 生长,细胞壁变薄,从而降低早材的平均密度值。平 均最高温度实际上是表征白天温度所能达到的高 点,过高的温度会增强树木的蒸腾作用,加剧干旱胁 迫,从而抑制树木的生长,导致树轮密度值上升。刘 禹等对于黄陵油松密度、同位素的研究中也发现类 似的结果^[16],其中黄陵油松的早材最小密度与季节 温度、降水量存在明显的相关,而早材最小密度与早 材平均密度具有极高的相关性。因此,在地处干旱 区的贺兰山北部利用早材平均密度重建 5—7 月平 均最高温度具有明显的树木生理学意义。

3 温度重建

利用贺兰山北部早材平均密度差值年表序列, 重建贺兰山北部地区 1801—2008 年的 5—7 月平均 最高温度。回归方程为

T = 16.867X-10.633。
式(1)中,T为贺兰山北部 5-7月平均最高温度;X
为贺兰山北部区域早材平均密度差值年表序列。

重建方程的相关系数 R 为 0.67,在校准期内, 58 年的重建值对实测值的解释方差 R^2 为 44.9%, 调整自由度后解释方差 R_{adj}^2 为 43.9%, F=45.63, P<0.00001。由图 3 可知,重建值与实测值有较好 的同步性。

对重建结果进行交叉检验^[31]发现,重建方程交 叉检验所得的误差缩减值 R_e=0.43;乘积平均数检 验值 *t* 为 4.12,其显著性水平均达到 0.0005;交叉 检验所得的相关系数分别为 0.65,显著性水平分别 为 0.0001;一阶差相关系数分别为 0.60,显著水平 为 0.001。另外在符号检验方面,低频符号 *S*₁ 检验 达到了 0.01 的显著性水平,高频符号 S₂ 检验达到 了 0.05 的显著性水平。从统计特征来说,式(1)具 有很好的稳定性。

图 3 温度实测数据与重建值比较 Fig. 3 Comparison of recorded and estimated temperature for common period from 1951 to 2008

4 温度重建序列特征

贺兰山北部 1801—2008 年 5—7 月平均最高温
度为 27.40℃(图 4),标准差 σ 为 0.4℃。19 世纪
20—80 年代,温度整体处于一个较低的水平。19 世

纪中叶小冰期结束前后,全球温度开始回升,西北地 区多条树轮温度重建序列^[32-36]都体现了此次升温, 此次升温的前期在该序列中体现较为明显。从19 世纪末期,温度开始上升。但在20世纪初期10年 温度有所下降,打断了这一升温趋势,20世纪 20年代末期温度又开始上升,并在40年代进入一个

图 4 贺兰山北部 5—7 月平均最高温度逐年变化曲线及其 10 年低通滤波曲线 Fig. 4 Comparison between unfiltered and 10-year low-pass filtered May—July maximum temperature in the north part of Helan Mountains

相对温暖的时期。20世纪60年代和70年代的寒冷期中断了气候变暖,但80年代和90年代全球气

候又继续变暖^[37]。近58年来,贺兰山北部5-7月 平均最高温度,在40年代暖期结束以后,从1954年 开始转冷,温度下降,并在 20 世纪 60 年代和 70 年 代长期徘徊在较低的水平。从 20 世纪 80 年代开 始,温度缓慢回升。近十多年来,温度加速上升,特 别进入 21 世纪以后,贺兰山北部 5—7 月平均最高 温度升温更加明显,2000—2008 年平均温度 (27.90℃)比近 208 年的平均温度(27.40℃)上升了 0.50℃(表 4)。

采用多窗谱分析方法^[38-40]对温度重建序列进行 周期分析。贺兰山北部温度重建序列存在 120 年 (达到 0.05 显著性水平)、8.1 年(达到 0.05 显著性 水平)、6.5 年(达到 0.1 显著性水平)、3.2 年(达到 0.05 显著性水平)、2.9 年(达到 0.05 显著性水平)、 2.1年(达到 0.05 显著性水平)的准周期变化。为 进一步了解重建序列的周期时域变化特征,对重建 序列进行小波分析,本文采用的是 Morlet 小波,计 算时采用对称延伸法^[41]消除小波变换的边界效应。 通过对图 5 的观察,并以世纪为尺度计算小波方差, 发现 2~8年的短尺度振荡贯穿整个时段,但不同时 间段,最强振荡频率也不同。1801—1899年这个时 段的中期 5~10年与 30~50年的振荡都不同程度 减弱,变化幅度减小,15~25年的振荡都不同程度 减弱,变化幅度减小,15~25年的振荡的显增强,振 幅加大,8~10年的振荡在逐渐减弱,相反 2~6年 和 12~15年的振荡在增强。

表 4 贺兰山北部温度重建序列的相关统计特征

Table 4	Summary	characteristics of	temperature	reconstruction	in the no	rth part of	f Helan	Mountain
---------	---------	--------------------	-------------	----------------	-----------	-------------	---------	----------

年份	冷年值/℃	年份	暖年值/℃	年代	冷年代值/℃	年代	暖年代值/℃	年份	平均值/℃
2002	26.50	2008	29.30	1970	27.20	2000	27.88	1801-1899	27.43
1992	26.60	1947	28.90	1980	27.20	1800	27.66	1900—2008	27.44
1983	26.70	1994	28.60	1960	27.28	1950	27.64	2000-2008	27.90
1964	26.80	1953	28.50	1880	27.29	1990	27.57	1801 - 2008	27.40
1970	26.80	1804	28.40	1830	27.34	1890	27.56		
1977	26.80	2005	28.40	1930	27.35	1940	27.56		
1979	26.80	1811	28.30	1820	27.36	1810	27.53		
1884	26.90	1890	28.30	1870	27.37	1850	27.45		
1895	26.90	1957	28.30	1840	27.38	1900	27.44		
1921	26.90	1997	28.30	1910	27.38	1860	27.43		

Fig. 5 Wavelet analysis of the reconstructed series in the north part of Helan Mountains

5 温度重建序列与火山喷发

在全球有气象记录的160年当中的某些时段,地 球表面的温度因为火山喷发,平均降低0.5°C^[42-44]。 根据 Briffa 等^[8]和 Jones 等^[45]对北半球多个地区的 密度年表的相关研究,低温往往造成树轮密度值下 降。利用 Briffa 等^[8]对近 600 年来的树轮密度所记 录的温度与火山喷发的相关信息,对重建序列低值 时段进行分析,发现贺兰山北部温度重建序列对全 球火山爆发降温效应有极为良好的响应。将温度不 高于 27℃视为偏冷年,在近 202 年里,14 次较大的 火山喷发之后,共出现了 28 个偏冷年,这些受火山 喷发影响的年份的温度平均值为 26.90℃,比 208 年来的平均温度(27.40℃)降低了 0.50℃(表 5)。 1815年前后,全球温度受 Tambora火山爆发影响, 出现了较为明显的降低,1816年在欧洲甚至出现了 无夏年。贺兰山北部地区在 19 世纪初期处于一个 偏暖时期,而在 1815年后的 3 年温度明显下降,一 直低于近 208 年来的平均温度。1907年 Ksudach 火山爆发和 1912年 Katmai火山爆发以后,贺兰山 北部地区的温度下降,打断了 20 世纪初的升温进 程。近 50年来,影响最大是 1991年爆发的 Pinatubo火山,比 208年来的平均温度降低了 1℃。

表 5 重建气温序列与火山爆发

Table 5 The temperature reconstruction

and volcanic eruptions

火山爆发	重建序列对 应低温年份	距平值/℃
Tambora(1815年)	1816 - 1818	-0.4
Cosiguina(1835年)	1834 - 1835	-0.4
Chikurachki(1853 年), Sheveluch(1854)	1853—1854	-0.3
Krakatu(1883 年), Okataina(1886 年)	1884—1888	-0.5
Santa Maria(1902年)	1902	-0.4
Ksudach(1907 年), Katmai(1912 年)	1908—1913	-0.4
Bezymianny(1956年)	1956	-0.7
Agung(1963年)	1963 - 1964	-0.7
St Helens(1980年)	1979 - 1980	-0.6
El Chichon(1982年)	1983 - 1985	-0.7
Pinatubo(1991 年)	1992	-1.0

6 区域比较

区域比较是验证单点树轮重建气候序列可靠性 的有效途径之一。对本文采用的贺兰山北部的早材 平均密度年表指数、甘肃石门山油松早材平均密度 年表指数与景泰昌灵山的油松早材平均密度年表指 数进行 10 年低通滤波处理,发现 3 个采点间的油松 早材平均密度变化具有良好的相关性,其中贺兰山 与石门山的相关性达到了 0.548。对甘肃天水石门 山和景泰昌灵山的密度研究中发现这两个采点的油 松早材平均密度与 6—7 月平均最高温度有良好的 相关,这意味着 3 个采样点的油松早材平均密度受 到相似气候要素的影响,这对建立大区域范围历史 温度场有一定意义。

7 结 论

1) 贺兰山油松年轮早材平均密度对油松生长季 5—7 月平均最高温度有良好的响应,用树轮早材平均密度差值年表来重建贺兰山北部 1801—2008 年 5—7 月平均最高温度,能够获得稳定、可靠的重建结果。

2) 贺兰山北部 1801—2008 年 5—7 月平均最高温度约为 27.40℃。通过比对火山喷发的记录发现,重建序列在近 208 年里,16 次较大的火山喷发之后,共出现了 28 个偏冷年,这些受火山喷发影响的年份的温度平均为 26.90℃,比 208 年来的平均最高温度(27.40℃)降低了 0.50℃。

3) 温度序列存在着显著的周期性变化,主要的 振荡准周期有 120 年、8.1 年、6.5 年、3.2 年、2.9 年、2.1 年。

4) 贺兰山北部的油松早材密度变化与甘肃昌 灵山、石门山的油松早材平均密度有良好的一致性, 而3个采点的早材平均密度都与温度具有较好的相 关性,这意味着3个地区的油松早材平均密度可能 包含类似的气候信息。

参考文献

- [1] Büntgen U, Frank D C, Nievergelt D, et al. Summer temperature variations in the European Alps, AD755—2004. J Climate, 2006, 19: 5606-5623.
- [2] Büntgen U, Frank D C, Esper J, et al. A 1052-year treering proxy for Alpine summer temperatures. *Cliamte Dynamics*, 2005, 25: 141-153.
- Büntgen U, Frank D C, Grudd H, et al. Long-term summer temperature variations in the Pyrenees. *Climate Dynamics*, 2008, 31: 615-631.
- [4] Wilson R J S, Luckman B H. Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada. *The Holocene*, 2003, 13(6): 851-861.
- [5] Briffa K R, Jones P D, Schweingruber F H. Summer temperature patterns over Europe: A reconstruction from 1750 AD based on maximum latewood density indices of conifers. *Quaternary Research*, 1988, 30: 36-52.
- [6] Wang L L, Payette S, Begin Y. Tree-ring width and density characteristics of living, dead and subfossil black spruce at treeline in arctic Québec. *The Holocene*, 2001, 11(3): 333-341.
- [7] Luckman B H, Wilson R J S. Summer temperatures in the

Canadian Rockies during the last millennium—a revised record. *Climate Dynamics*, 2005, 24: 131-144.

- [8] Briffa K R, Jones P D, Schweingruber F H, et al. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. *Nature*, 1998, 393: 450-455.
- [9] Xiong L M, Naoki O, Takeshi F, et al. Chronology development and climate response analysis of different New Zealand pink pine (*Halocarpus biformis*) tree-ring parameters. *Canadian Journal of Forest Research*, 1998, 28: 566-573.
- [10] Pant G B, Kumar K R, Borgaonkar H P, et al. Climatic response of Cedrus deodara tree-ring parameters from two sites in the western Himalaya. *Canadian Journal of Forest Re*search, 2000, 30: 1127-1135.
- [11] Fan Z X, Bräuning A, Yang B, et al. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. *Global and Planetary Change*, 2008, 65: 1-11.
- [12] Wang Lily, Duan Jianping, Chen Jin, et al. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China. *International Journal of Climatology*, 2009, 30: 1311-1316.
- [13] 王丽丽,邵雪梅,黄磊,等.黑龙江漠河兴安落叶松与樟子 松树轮生长特性及其对气候的响应.植物生态学报,2005, 29(3):380-385.
- [14] Chen Jin, Wang Lily, Zhu Haifeng, et al. Reconstructing mean maximum temperature of growing season from the maximum density of the Schrenk Spruce in Yili, Xinjiang, China. China Science Bulletin, 2009, 54(1): 1-9.
- [15] 袁玉江, Esper J, 魏文寿, 等. 新疆天山西部三个云杉上树 线树轮最大密度年表的研制、相关性及其气候信号分析. 干 旱区地理, 2008, 31(4): 560-566.
- [16] 刘禹,吴祥定,邵雪梅,等. 树轮密度、稳定 C 同位素对过去 近 100a 陕西黄陵季节温度与降水的恢复. 中国科学(D 辑), 1997, 27(3): 271-276.
- [17] 刘禹,马利民,蔡秋芳,等.采用树轮稳定碳同位素重建贺 兰山 1890 年以来夏季(6~8月)温度.中国科学(D辑), 2002,32(8):667-674.
- [18] 刘禹,史江峰, Shishov V,等.以树轮晚材宽度重建公元 1726年以来贺兰山北部5~7月降水量.科学通报,2004,49
 (3):256-269.
- [19] 刘禹,王雷,史江峰,等.利用贺兰山北部树轮资料重建过去 270 年以来 6~8 月平均干燥指数.第四纪研究,2005,25
 (5):540-544.
- [20] 蔡秋芳,刘禹.油松树轮记录的1776年以来贺兰山地区温度 变化.地理学报,2006,61(9):930-936.
- [21] Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. *Tree-ring Bulletin*, 1983, 43: 69-78.
- [22] Park W. Development of Anatomical Tree-ring Chronologies from Southern Arizona Conifers Using Image Analysis. Tucson: The University of Arizona, 1990.
- [23] Schweingruber F H, Fritts H C, Bräker O U, et al. The X-

ray technique as applied to dendroclimatology. *Tree-Ring Bulletin*, 1978, 38: 61-91.

- [24] Cook E R. A Time Series Analysis Approach to Tree-ring Standardization. Tucson: The University of Arizona, 1985.
- [25] 邵雪梅,吴祥定.华山树木年轮年表的建立.地理学报, 1994, 49(2):174-181.
- [26] Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23: 201-213.
- [27] Panyushkina I P, Hughes M K, Vaganov E A. Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. *Canadian Journal of Forest Research*, 2003, 33: 1905-1914.
- [28] 吴祥定,邵雪梅.中国秦岭地区树木年轮密度对气候响应的 初步分析.应用气象学报,1994,5(2):253-256.
- [29] 尹训钢,吴祥定.华山松树木年轮对气候响应的模拟分析. 应用气象学报,1995,6(3):257-264.
- [30] 史江峰,刘禹, Vaganov E,等. 贺兰山油松生长的气候响应 机制初步探讨. 第四纪研究, 2005, 25(2):245-251.
- [31] 李江风,袁玉江,由希尧,等.树木年轮水文学研究与应用. 北京:科学出版社,2000.
- [32] 陈峰,袁玉江,魏文寿,等.呼图壁河流域过去 313 a 春季平 均最高温度序列及其特征分析.中国沙漠,2009,29(1): 162-167.
- [33] 王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年温度序列的建 立. 应用气象学报, 1998, 9(4): 392-401.
- [34] 靳立亚,秦宁生,勾晓华,等.青海南部高原近 450 年来春 季最高温度序列及其时变特征.第四纪研究,2005,25(2): 193-201.
- [35] 侯迎,王乃昂,李钢,等.利用树轮资料重建1751-2005年 崆峒山地区夏季温度变化. 气候变化研究进展,2007,3(3): 172-176.
- [36] 陈峰,袁玉江,魏文寿,等.利用树轮图像灰度重建南天山北 坡西部初夏温度序列.中国沙漠,2008,28(5):842-847.
- [37] 许靖华.太阳、气候、饥荒与民族大迁徙.中国科学(D辑), 1998, 28(4): 366-384.
- [38] Mann M E, Lee J M. Robust estimate estimation of background noise and signal detection in climatic time series. *Climatic Change*, 1996, 33: 409-445.
- [39] Thomson D J. Time series analysis of Holocene climate date.
 Philosophical Transactions of the Royal Society, 1990, 330: 601-616.
- [40] Thomson D J. Quadratic-inverse spectrum estimates: Applications to palaeoclimatology. *Philosophical Transactions of* the Royal Society, 1990, 332: 593-597.
- [41] 林振山,邓自旺.子波气候诊断技术的研究.北京:气象出版 社,1999.
- [42] 黄春长.环境变迁.北京:科学出版社,2000.
- [43] 曲维政,刘应辰,黄菲,等.平流层火山气溶胶时空传播规 律及其气候效应.应用气象学报,2010,21(5):253-256.
- [44] 王绍武. 全球温度变暖的检测及成因分析. 应用气象学报, 1993, 4(2): 226-233.

陈

May—July Temperature Variability Since 1801 Inferred from Tree Rings of *Pinus tabulae formis* of Helan Mountains in China

峰等:树轮记录的贺兰山北部近 208 年 5-7 月温度变化

Chen Feng Yuan Yujiang Wei Wenshou Zhang Tongwen Zhang Ruibo Yu Shulong Fan Ziang Li Yang Shang Huaming

(Institute of Desert Meteorology of China Meteorological Administration, Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Xinjiang Laboratory of Tree Ring Ecology, Urumqi 830002)

Abstract

Ninety newly measured tree-ring width and density series from Chinese Pines (Pinus tabulae formis) from four sites in Helan Mountains are compiled. To remove non-climatic, age-related growth trends from the raw tree-ring width and density measurement series, while allowing lower frequency information above the mean segment length to be preserved, the program ARSTAN is used to detrend the ring width and density sequences using hugershoff growth curve and to average the standardized ring width and density sequences into the master chronologies. The correlating coefficient between earlywood density record and May—July maximum temperature of Yinchuan reaches up to 0. 67 during 1951—2008. The May—July maximum temperature reconstruction (1801-2008) uses the earlywood density chronologies from the region. The explained variance of model is 44.9% (F=45.625, P<0.0001). The mean temperature over the 1801–2008 periods is estimated to be 27.4 °C. The reconstructed temperature has 3 warm periods, including 1801-1812, 1940-1953, and 1994-2008. The rising of temperature series in the 2000s is the fastest and indicates that temperature in the 2000s has been warmer than any other period since 1801. The reconstructed temperature during the last 208a has significant period cycles of 120 years (95%), 8.1 years (95%), 6.5 years (90%), 3.2 years (95%), 2.9 years (95%), and 2.1 years (99%). Many low density values are forced by volcanic eruptions. Comparison shows volcanic eruptions have no systematic relationship with this reconstruction data, but they are correlated with the regional characteristics of the temperature and forcing data. Detailed analysis, however, suggests a cooling of several years following primarily tropical events with a volcanic eruption index (VEI). Examples include Tambora in Indonesia (1815), Cosiguina in Nicaragua(1935), Chikurachki in Kurilels(1853), Sheveluch in Kamchatka(1854), Krakatu in Java(1883), Okataina in New Zealand(1886), Santa Maria in Guatemala(1902), Ksudach in Kamchatka (1907), Katmai in Alaska(1912), Bezymianny in Kamchatka (1956), Agung in Indonesia (1963), St Helens in US(1980), El Chichon in Mexico(1982), and Pinatubo in Philippines(1991). The mean of 28 low values after volcanic eruption in reconstructed temperature series is 26.9°C, which is 0.5°C lower than the average over the 1801-2008. The earlywood density of Helan Mountains has good relations with the earlywood densities of Shimen Mountains and Changling Mountains in Gansu.

Key words: Helan Mountains; tree-ring; Chinese Pine; mean earlywood density; May-July temperature