2020年 第31卷 第2期
2020, 31(2): 129-145.
DOI: 10.11898/1001-7313.20200201
摘要:
作为中国气象局雷电野外科学试验基地(CMA_FEBLS)的重要组成部分,广州高建筑物雷电观测站(TOLOG)始建于2009年,迄今已积累数百次高建筑物雷电资料。对于雷电连接过程,高建筑物会起到“放大镜”的作用:TOLOG的观测在国际上首次发现了连接过程中负-正先导之间“头部-侧面”连接的现象,给出了先导连接行为的两种基本形态;揭示了负先导梯级发展过程的精细化结构,给出了下行先导和上行先导的二维/三维发展特征;估算了不同高度建筑物上雷电的闪击距离。高建筑物对雷电电磁场具有“放大器”的作用,且建筑物越高增强效应越显著。高建筑物是下行和上行闪电的“汇集点”:对下行闪电的吸引作用可保护高建筑物附近的其他物体免遭雷击;正地闪的回击、延续电流和云内放电过程均可在高建筑物上触发负极性上行闪电。另外,高建筑物区域可作为闪电监测系统的“标校场”,TOLOG的观测资料在地闪定位系统探测效率和定位精度的评估方面也得到了应用。
作为中国气象局雷电野外科学试验基地(CMA_FEBLS)的重要组成部分,广州高建筑物雷电观测站(TOLOG)始建于2009年,迄今已积累数百次高建筑物雷电资料。对于雷电连接过程,高建筑物会起到“放大镜”的作用:TOLOG的观测在国际上首次发现了连接过程中负-正先导之间“头部-侧面”连接的现象,给出了先导连接行为的两种基本形态;揭示了负先导梯级发展过程的精细化结构,给出了下行先导和上行先导的二维/三维发展特征;估算了不同高度建筑物上雷电的闪击距离。高建筑物对雷电电磁场具有“放大器”的作用,且建筑物越高增强效应越显著。高建筑物是下行和上行闪电的“汇集点”:对下行闪电的吸引作用可保护高建筑物附近的其他物体免遭雷击;正地闪的回击、延续电流和云内放电过程均可在高建筑物上触发负极性上行闪电。另外,高建筑物区域可作为闪电监测系统的“标校场”,TOLOG的观测资料在地闪定位系统探测效率和定位精度的评估方面也得到了应用。
2020, 31(2): 146-155.
DOI: 10.11898/1001-7313.20200202
摘要:
基于广州高建筑物雷电观测站的观测设备,于2016年6月4日在广州塔上发生的一次上行闪电过程中观测到双向发展的直窜先导正端在回击前、后突然延展的现象。利用高时间分辨率的光学和电场变化同步数据,分析双向先导正端突然延展现象的细节特征。结果表明:回击前直窜先导双向发展时正端可能会出现多次突然延展的现象;突然延展现象有时由双向先导的正端与已有的悬空先导序列相连而引发,并促使双向先导正端传输至未击穿空气中;在一次继后回击后,通道正端头部也观测到两次突然延展现象,但未沿回击前正端伸展通道传输,而是通过开辟新通道进入了未击穿空气;回击前直窜先导正端三次突然伸展的二维平均速率约为2.3×106 m·s-1,伸展长度平均值约为115 m;回击后通道头部两次突然延展的二维平均速率约为4.3×106 m·s-1,伸展长度平均值约为212 m。
基于广州高建筑物雷电观测站的观测设备,于2016年6月4日在广州塔上发生的一次上行闪电过程中观测到双向发展的直窜先导正端在回击前、后突然延展的现象。利用高时间分辨率的光学和电场变化同步数据,分析双向先导正端突然延展现象的细节特征。结果表明:回击前直窜先导双向发展时正端可能会出现多次突然延展的现象;突然延展现象有时由双向先导的正端与已有的悬空先导序列相连而引发,并促使双向先导正端传输至未击穿空气中;在一次继后回击后,通道正端头部也观测到两次突然延展现象,但未沿回击前正端伸展通道传输,而是通过开辟新通道进入了未击穿空气;回击前直窜先导正端三次突然伸展的二维平均速率约为2.3×106 m·s-1,伸展长度平均值约为115 m;回击后通道头部两次突然延展的二维平均速率约为4.3×106 m·s-1,伸展长度平均值约为212 m。
2020, 31(2): 156-164.
DOI: 10.11898/1001-7313.20200203
摘要:
利用广州高建筑物雷电观测站的高速摄像机在2012—2018年拍摄到的发生在两座尖顶建筑物广州塔(600 m高,12次)和广晟国际大厦(360 m高,9次)上的21次下行地闪光学数据,结合广东电网闪电定位系统提供的回击峰值电流数据,统计建筑物高度和回击峰值电流强度对闪击距离的影响,并探讨闪击距离与上行连接先导起始时间的相关性。结果表明:更高的建筑物上雷电的闪击距离更长,广州塔闪击距离的中位数约是广晟国际大厦闪击距离中位数的2倍;对于确定高度的建筑物,闪击距离有随着回击峰值电流增强而变长的趋势,且建筑物越高,对应的回击峰值电流也越强;在下行与上行先导连接前0.1 ms内,二者的平均速率之比小于4,且速率比值在0~1这一区间的样本最多,占比约65%。
利用广州高建筑物雷电观测站的高速摄像机在2012—2018年拍摄到的发生在两座尖顶建筑物广州塔(600 m高,12次)和广晟国际大厦(360 m高,9次)上的21次下行地闪光学数据,结合广东电网闪电定位系统提供的回击峰值电流数据,统计建筑物高度和回击峰值电流强度对闪击距离的影响,并探讨闪击距离与上行连接先导起始时间的相关性。结果表明:更高的建筑物上雷电的闪击距离更长,广州塔闪击距离的中位数约是广晟国际大厦闪击距离中位数的2倍;对于确定高度的建筑物,闪击距离有随着回击峰值电流增强而变长的趋势,且建筑物越高,对应的回击峰值电流也越强;在下行与上行先导连接前0.1 ms内,二者的平均速率之比小于4,且速率比值在0~1这一区间的样本最多,占比约65%。
2020, 31(2): 165-174.
DOI: 10.11898/1001-7313.20200204
摘要:
基于2016—2017年广州高建筑物雷电观测站获取的资料对粤港澳闪电定位系统(简称定位系统)的性能进行评估,并根据2014—2018年定位系统历史资料对广州高建筑物区域的雷电活动特征进行初步分析,结果表明:定位系统对闪电的探测效率为93%(214/229),对回击的探测效率为93%(449/481),对下行闪电首次回击、继后回击及上行闪电回击的定位误差的平均值(中值)分别为361 m(188 m)、252 m(167 m)和294 m(173 m);当接地点高度低于200 m(不低于200 m)时,定位系统对下行负极性闪电首次和继后回击的云闪/地闪识别正确率分别为99%(80%)和93%(35%),有83%的上行负地闪回击被定位系统误判为云闪,广州高建筑物区域内绝大部分负云闪定位记录实际是高建筑物地闪;对定位系统得到的孤立高建筑物闪电密度中心进行分析后发现,广州塔(600 m)闪电密度中心200 m半径范围内年均回击次数约为中信广场(390 m)和广发证券大厦(308 m)的5倍,推测广州塔闪电的主要类型为上行闪电,而中信广场和广发证券大厦则为下行闪电。
基于2016—2017年广州高建筑物雷电观测站获取的资料对粤港澳闪电定位系统(简称定位系统)的性能进行评估,并根据2014—2018年定位系统历史资料对广州高建筑物区域的雷电活动特征进行初步分析,结果表明:定位系统对闪电的探测效率为93%(214/229),对回击的探测效率为93%(449/481),对下行闪电首次回击、继后回击及上行闪电回击的定位误差的平均值(中值)分别为361 m(188 m)、252 m(167 m)和294 m(173 m);当接地点高度低于200 m(不低于200 m)时,定位系统对下行负极性闪电首次和继后回击的云闪/地闪识别正确率分别为99%(80%)和93%(35%),有83%的上行负地闪回击被定位系统误判为云闪,广州高建筑物区域内绝大部分负云闪定位记录实际是高建筑物地闪;对定位系统得到的孤立高建筑物闪电密度中心进行分析后发现,广州塔(600 m)闪电密度中心200 m半径范围内年均回击次数约为中信广场(390 m)和广发证券大厦(308 m)的5倍,推测广州塔闪电的主要类型为上行闪电,而中信广场和广发证券大厦则为下行闪电。
2020, 31(2): 175-184.
DOI: 10.11898/1001-7313.20200205
摘要:
在经典偶极性电荷结构下,结合已有的闪电放电参数化方案及中国气象局雷电野外科学试验基地的广州高建筑物雷电观测站(Tall-Object Lightning Observatory in Guangzhou,TOLOG)观测分析结果,不断调整主负电荷区参数进行二维高分辨率闪电模拟试验,讨论自持型上行负地闪与云中闪电之间的相互竞争关系以及有利于自持型上行负地闪始发的云中电荷结构。数值模拟结果表明:自持型上行负地闪始发与电荷结构存在一定关系,在主负电荷区越高的情况下,始发自持型上行负地闪需要的主负区电荷密度与电荷分布范围越大。对于不同类型的闪电始发条件,推测存在自持型上行负地闪始发的主负电荷区高度阈值,当主负电荷区高度高于该值时,随着主负区电荷量的不断累积,会始发起始于云中的闪电而不是自持型上行负地闪,当主负电荷区高度低于该值时,电荷的不断积累会导致自持型上行负地闪始发。
在经典偶极性电荷结构下,结合已有的闪电放电参数化方案及中国气象局雷电野外科学试验基地的广州高建筑物雷电观测站(Tall-Object Lightning Observatory in Guangzhou,TOLOG)观测分析结果,不断调整主负电荷区参数进行二维高分辨率闪电模拟试验,讨论自持型上行负地闪与云中闪电之间的相互竞争关系以及有利于自持型上行负地闪始发的云中电荷结构。数值模拟结果表明:自持型上行负地闪始发与电荷结构存在一定关系,在主负电荷区越高的情况下,始发自持型上行负地闪需要的主负区电荷密度与电荷分布范围越大。对于不同类型的闪电始发条件,推测存在自持型上行负地闪始发的主负电荷区高度阈值,当主负电荷区高度高于该值时,随着主负区电荷量的不断累积,会始发起始于云中的闪电而不是自持型上行负地闪,当主负电荷区高度低于该值时,电荷的不断积累会导致自持型上行负地闪始发。
2020, 31(2): 185-196.
DOI: 10.11898/1001-7313.20200206
摘要:
利用中国气象局雷电野外科学试验基地(CMA_FEBLS)三维闪电观测数据,结合广州双偏振雷达观测数据,分析了2017年5月7日广东一次暖云强降水对流单体的闪电活动及其与云降水结构的关系。该单体在4 h内产生1250个闪电,地闪比例约24%。绝大多数闪电出现在4~12 km高度,对应温度层为0℃至-40℃;闪电放电活动的峰值高度出现在8.5 km,对应环境温度约-19℃。分析的强降水单体宏观上呈现上正、中负、下正的三极性电荷结构,中部负电荷核心区约为-8℃至-15℃。在闪电活动区域中,由干雪粒子主导区域占比约82%,霰粒子主导区域占比约11%,且大部分与闪电活动关联的霰粒子主要位于4~8 km高度。总闪频数与30 dBZ雷达回波顶高、-20℃温度层上大于20 dBZ的回波体积具有较好的相关性。闪电活动的平均位置高度与20 dBZ雷达回波顶高和-20℃温度层上大于30 dBZ的回波体积具有较好的相关关系。闪电活动与最大降水强度之间具有较好的时序对应关系,单个闪电表征降水量的值为107 kg/fl量级。
利用中国气象局雷电野外科学试验基地(CMA_FEBLS)三维闪电观测数据,结合广州双偏振雷达观测数据,分析了2017年5月7日广东一次暖云强降水对流单体的闪电活动及其与云降水结构的关系。该单体在4 h内产生1250个闪电,地闪比例约24%。绝大多数闪电出现在4~12 km高度,对应温度层为0℃至-40℃;闪电放电活动的峰值高度出现在8.5 km,对应环境温度约-19℃。分析的强降水单体宏观上呈现上正、中负、下正的三极性电荷结构,中部负电荷核心区约为-8℃至-15℃。在闪电活动区域中,由干雪粒子主导区域占比约82%,霰粒子主导区域占比约11%,且大部分与闪电活动关联的霰粒子主要位于4~8 km高度。总闪频数与30 dBZ雷达回波顶高、-20℃温度层上大于20 dBZ的回波体积具有较好的相关性。闪电活动的平均位置高度与20 dBZ雷达回波顶高和-20℃温度层上大于30 dBZ的回波体积具有较好的相关关系。闪电活动与最大降水强度之间具有较好的时序对应关系,单个闪电表征降水量的值为107 kg/fl量级。
2020, 31(2): 197-212.
DOI: 10.11898/1001-7313.20200207
摘要:
基于自主研发的闪电连续干涉仪,对2019年6月11日在中国气象局雷电野外科学试验基地广州从化人工引雷试验场成功触发的一次多回击闪电放电全过程进行观测,结合通道底部电流数据和电场变化数据,共同揭示触发闪电全放电过程:连续干涉仪能够定位到最小为8 A的不连续的先驱电流脉冲辐射信号,初始先驱电流脉冲(IPCP)的平均转移电荷量约为先驱电流脉冲(PCP)的2倍;上行正先导连续发展后为初始连续电流(ICC)过程,最初正流光通道以105 m·s-1量级的速度继续发展延伸,之后出现反冲先导放电;在ICC阶段出现的经典M分量,可由向前的106 m·s-1量级速度的正流光(先导)产生,也可由已有通道头部产生的反冲先导产生,且整个M分量过程中,多个反冲先导维持了放电过程的持续;之后的回击间过程以反冲先导为主要放电形式,回击电流脉冲之前存在多次反冲先导过程,但多数未发展到接地通道,只处于企图先导阶段,直至成功的先导回击产生;而前两次回击具有超短的时间间隔,约为4.5 ms,这是由于两次回击前的先导来源于云内不同分支的反冲先导过程。
基于自主研发的闪电连续干涉仪,对2019年6月11日在中国气象局雷电野外科学试验基地广州从化人工引雷试验场成功触发的一次多回击闪电放电全过程进行观测,结合通道底部电流数据和电场变化数据,共同揭示触发闪电全放电过程:连续干涉仪能够定位到最小为8 A的不连续的先驱电流脉冲辐射信号,初始先驱电流脉冲(IPCP)的平均转移电荷量约为先驱电流脉冲(PCP)的2倍;上行正先导连续发展后为初始连续电流(ICC)过程,最初正流光通道以105 m·s-1量级的速度继续发展延伸,之后出现反冲先导放电;在ICC阶段出现的经典M分量,可由向前的106 m·s-1量级速度的正流光(先导)产生,也可由已有通道头部产生的反冲先导产生,且整个M分量过程中,多个反冲先导维持了放电过程的持续;之后的回击间过程以反冲先导为主要放电形式,回击电流脉冲之前存在多次反冲先导过程,但多数未发展到接地通道,只处于企图先导阶段,直至成功的先导回击产生;而前两次回击具有超短的时间间隔,约为4.5 ms,这是由于两次回击前的先导来源于云内不同分支的反冲先导过程。
2020, 31(2): 213-223.
DOI: 10.11898/1001-7313.20200208
摘要:
中国气象局雷电野外科学试验基地开展的人工触发闪电试验是研究闪电电磁辐射效应的有效手段,利用架设在试验场地周边的多套磁场天线所获取的高灵敏度磁场数据,针对初始连续电流阶段的中低频磁场特征开展研究。得益于磁场天线带宽的拓展,首次解析出了相对平静期内的磁场脉冲,单个脉冲的平均宽度约为1 μs,平均脉冲间隔约为14 μs,对应了该阶段中上行先导的小尺度击穿发展形式;在近、远距离磁场测量中均观测到了与先导通道头部击穿放电相关的爆发式磁场脉冲,其平均脉冲间隔(约为24.5 μs)明显大于平静期脉冲的统计值,而且在爆发式脉冲期间通道底部电流逐步增大到几十至上百安培,表明此时电场条件更加有利于上行先导的发展;此外,高灵敏磁场天线能够直观地呈现出初始连续电流脉冲(initial continuous current pulse,ICCP)的电荷传输过程,且ICCP期间观测到的规则磁场脉冲的脉冲间隔比其他类型的磁场脉冲小一个量级,可能体现了正极性击穿和负极性击穿的特征差异。
中国气象局雷电野外科学试验基地开展的人工触发闪电试验是研究闪电电磁辐射效应的有效手段,利用架设在试验场地周边的多套磁场天线所获取的高灵敏度磁场数据,针对初始连续电流阶段的中低频磁场特征开展研究。得益于磁场天线带宽的拓展,首次解析出了相对平静期内的磁场脉冲,单个脉冲的平均宽度约为1 μs,平均脉冲间隔约为14 μs,对应了该阶段中上行先导的小尺度击穿发展形式;在近、远距离磁场测量中均观测到了与先导通道头部击穿放电相关的爆发式磁场脉冲,其平均脉冲间隔(约为24.5 μs)明显大于平静期脉冲的统计值,而且在爆发式脉冲期间通道底部电流逐步增大到几十至上百安培,表明此时电场条件更加有利于上行先导的发展;此外,高灵敏磁场天线能够直观地呈现出初始连续电流脉冲(initial continuous current pulse,ICCP)的电荷传输过程,且ICCP期间观测到的规则磁场脉冲的脉冲间隔比其他类型的磁场脉冲小一个量级,可能体现了正极性击穿和负极性击穿的特征差异。
2020, 31(2): 224-235.
DOI: 10.11898/1001-7313.20200209
摘要:
分析了2019年夏季在广州从化人工引雷试验场获取的14次人工触发闪电通道底部电流数据,以有无回击(RS)和初始连续电流(ICC)持续时间长短2个标准对数据进行分类,研究不同触发闪电和不同放电阶段的差异和规律。研究表明:相比无回击的触发闪电,产生回击的触发闪电具有更大的先驱放电脉冲(PCP)及初始先驱放电脉冲(IPCP)的平均峰值电流、更多的IPCP总体转移电荷量、更大的ICC平均电流和总体转移电荷量以及更长的ICC持续时间;初始连续电流持续时间是回击平均峰值电流大小、首次继后回击转移电荷量大小和首次继后回击峰值电流大小的重要影响因素,且长初始连续电流的触发闪电对应的PCP及IPCP平均峰值电流也更大、平均转移电荷量也更多;PCP和IPCP平均峰值电流与ICC持续时间相关性最强,是决定ICC放电持续时间的重要因素,未能产生初始连续电流的PCP脉冲簇其平均转移电荷量小于初始先驱放电脉冲簇,其转化的关键阈值之一是平均转移电荷量大于25.91 μC。
分析了2019年夏季在广州从化人工引雷试验场获取的14次人工触发闪电通道底部电流数据,以有无回击(RS)和初始连续电流(ICC)持续时间长短2个标准对数据进行分类,研究不同触发闪电和不同放电阶段的差异和规律。研究表明:相比无回击的触发闪电,产生回击的触发闪电具有更大的先驱放电脉冲(PCP)及初始先驱放电脉冲(IPCP)的平均峰值电流、更多的IPCP总体转移电荷量、更大的ICC平均电流和总体转移电荷量以及更长的ICC持续时间;初始连续电流持续时间是回击平均峰值电流大小、首次继后回击转移电荷量大小和首次继后回击峰值电流大小的重要影响因素,且长初始连续电流的触发闪电对应的PCP及IPCP平均峰值电流也更大、平均转移电荷量也更多;PCP和IPCP平均峰值电流与ICC持续时间相关性最强,是决定ICC放电持续时间的重要因素,未能产生初始连续电流的PCP脉冲簇其平均转移电荷量小于初始先驱放电脉冲簇,其转化的关键阈值之一是平均转移电荷量大于25.91 μC。
2020, 31(2): 236-246.
DOI: 10.11898/1001-7313.20200210
摘要:
在电子电气系统接地领域,地电位抬升对电子设备的破坏效应一直是人们关注的焦点。基于触发闪电技术,开展了地网地电位抬升冲击电涌保护器(surge protective device,SPD)的观测试验,重点分析了触发闪电初始长连续电流过程对SPD的冲击和损坏效应。结果发现,触发闪电注入地网后,闪电的初始长连续电流和继后回击的共同作用下很容易造成额定通流量的SPD损坏,当流经SPD的能量累积达到一定程度时仅初始长连续电流过程也会损坏SPD;冲击SPD的效应与初始长连续电流过程的不同的波形密切相关,当长连续电流过程叠加上升沿较快幅值较大的初始连续电流脉冲(ICCP,initial continuous current pulse)时,流经SPD的能量会迅速增加,是长连续电流过程中SPD损坏的最为关键因子。个例分析发现,当初始长连续电流过程持续时间和平均电流量级达到100 ms和200 A左右,泄放电量为25 C,流经SPD的能量达1000 J左右,易造成标称放电电流20 kA甚至更高的SPD损坏。
在电子电气系统接地领域,地电位抬升对电子设备的破坏效应一直是人们关注的焦点。基于触发闪电技术,开展了地网地电位抬升冲击电涌保护器(surge protective device,SPD)的观测试验,重点分析了触发闪电初始长连续电流过程对SPD的冲击和损坏效应。结果发现,触发闪电注入地网后,闪电的初始长连续电流和继后回击的共同作用下很容易造成额定通流量的SPD损坏,当流经SPD的能量累积达到一定程度时仅初始长连续电流过程也会损坏SPD;冲击SPD的效应与初始长连续电流过程的不同的波形密切相关,当长连续电流过程叠加上升沿较快幅值较大的初始连续电流脉冲(ICCP,initial continuous current pulse)时,流经SPD的能量会迅速增加,是长连续电流过程中SPD损坏的最为关键因子。个例分析发现,当初始长连续电流过程持续时间和平均电流量级达到100 ms和200 A左右,泄放电量为25 C,流经SPD的能量达1000 J左右,易造成标称放电电流20 kA甚至更高的SPD损坏。
2020, 31(2): 247-256.
DOI: 10.11898/1001-7313.20200211
摘要:
对2019年夏季广州市从化区3个雷暴过程中7次触发闪电过程的39次继后回击和10次M分量及其对应的地电位抬升(ground potential rise,GPR)电压数据进行统计分析。分析发现:39次继后回击对应的地电位抬升电压峰值几何平均值能达到-138.97 kV,且波形具有明显的次峰,次峰几何平均值为-90.09 kV,约为最大峰值的64.86%;继后回击引起的地电位抬升电压主要由雷电流泄放引起(相关系数为0.94),感应耦合作用相对较弱(相关系数为0.55),而M分量过程对应的地电位抬升电压则均由雷电流泄放引起(相关系数为0.99)。在雷电流瞬间冲击下,继后回击和M分量过程时的冲击接地电阻均小于工频接地电阻,M分量过程的冲击接地电阻平均值为12.02 Ω,继后回击过程为10.87 Ω。M分量半峰宽度可达毫秒量级,会使浪涌保护器长时间处于动作状态,极易引起浪涌保护器热崩溃损坏。
对2019年夏季广州市从化区3个雷暴过程中7次触发闪电过程的39次继后回击和10次M分量及其对应的地电位抬升(ground potential rise,GPR)电压数据进行统计分析。分析发现:39次继后回击对应的地电位抬升电压峰值几何平均值能达到-138.97 kV,且波形具有明显的次峰,次峰几何平均值为-90.09 kV,约为最大峰值的64.86%;继后回击引起的地电位抬升电压主要由雷电流泄放引起(相关系数为0.94),感应耦合作用相对较弱(相关系数为0.55),而M分量过程对应的地电位抬升电压则均由雷电流泄放引起(相关系数为0.99)。在雷电流瞬间冲击下,继后回击和M分量过程时的冲击接地电阻均小于工频接地电阻,M分量过程的冲击接地电阻平均值为12.02 Ω,继后回击过程为10.87 Ω。M分量半峰宽度可达毫秒量级,会使浪涌保护器长时间处于动作状态,极易引起浪涌保护器热崩溃损坏。