留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年  第32卷  第6期

显示方式:
2021年第6期封面及目次
2021, 32(6)
摘要:
2021年第6期封面及目次
综述
我国云降水物理飞机观测研究进展
郭学良, 付丹红, 郭欣, 方春刚
2021, 32(6): 641-652. DOI: 10.11898/1001-7313.20210601
摘要:
飞机观测是云中粒子相态、分布和转化特征的重要探测技术。我国云降水物理飞机观测开始于20世纪60年代,经过60多年的发展,在飞机平台、机载测量技术、云微物理结构和降水形成机制认识等方面均取得了长足进步。发现积层混合云中对流泡区具有更高的过冷水含量,凇附增长起重要作用,符合“播撒-供给”降水形成机制,而在层云区,当云厚度较小时,过冷水含量很少,冰雪晶的凝华、聚并增长起主导作用,并不符合“播撒-供给”降水形成机制,而当云厚度较大时,过冷水含量较为丰富,凝华、聚并和凇附增长起主导作用,基本符合“播撒-供给”降水形成机制;我国北方冬季降雪过程的形成机制主要是凝华-聚并机制,只有在水汽非常充足、云较厚的情况下,凇附增长过程才具有重要作用。近年虽然在人工影响天气播撒效应、数值模式云物理过程验证、卫星及雷达遥感数据检验、对流云结构观测等方面也取得了一些进展,但仍较薄弱,亟待加强。
论著
基于航测的云底气溶胶活化率与过饱和度估算
高茜, 刘全, 毕凯, 王飞, 盛久江, 何晖, 刘香娥
2021, 32(6): 653-664. DOI: 10.11898/1001-7313.20210602
摘要:
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。
华北中部夏季气溶胶和云分布特征
李义宇, 孙鸿娉, 杨俊梅, 任刚, 赵德龙, 周嵬, 刘智超
2021, 32(6): 665-676. DOI: 10.11898/1001-7313.20210603
摘要:
气溶胶与云的垂直分布特征是气溶胶间接气候效应关注的重点。基于2018年7—8月华北中部6架次飞机观测数据,研究气溶胶和云滴的垂直和水平分布特征。结果表明:华北中部780~5687 m高度内气溶胶数浓度( Na )平均值为821.36 cm-3,最大量级可达到104 cm-3,云中气溶胶数浓度(Nacc)占总颗粒浓度的80%以上,表明细颗粒占大多数,气溶胶粒子算术平均直径( Dm )平均值为0.12~0.52 μm;大气层结对气溶胶垂直分布影响较大,逆温阻挡气溶胶垂直输送,高空(高度2000 m以上) Dm 的垂直分布受到相对湿度影响较大; NaDm 在垂直方向波动较大,水平方向波动较小;低层云中云滴数浓度(Nc)较大、液态水含量(L)较小,而中层和高层云中Nc较小、L较大,Nc和云滴有效半径(Re)的概率密度函数均为双峰型分布,L的概率密度函数为单峰型分布;气溶胶数浓度谱基本呈现多峰型分布,而云滴数浓度谱多呈现单峰型分布。
初冬一次层状云较弱云区垂直结构的飞机观测
王烁, 张佃国, 王文青, 刘泉, 吴举秀, 刘畅
2021, 32(6): 677-690. DOI: 10.11898/1001-7313.20210604
摘要:
为分析层状云垂直微物理结构,了解雷达参数特征,揭示降水机制,利用机载Ka波段云雷达和DMT(Droplet Measurement Technologies)粒子测量系统,针对2019年11月17日山东冷锋层状云系开展从云顶至云底的垂直探测。结果表明:观测云层由高层云(3100~4500 m高度)和雨层云(800 ~2600 m高度)两部分组成。高层云过冷水含量较低,平均值为0.0026 g·m-3,最大值为0.008 g·m-3,云内冰晶通过水汽凝华增长,平均浓度为8.2 L-1,最大直径为900 μm,平衡谱状态下冰晶浓度与雷达反射率因子具有较好相关性,相关系数最大为0.84。雨层云过冷水含量丰富,最大含水量为0.354 g·m-3,过冷水区平均雷达反射率因子为7.48 dBZ,多普勒速度为-2.3 m·s-1,速度谱宽为0.7 m·s-1;雨层云中上部以冰晶为主,下部为暖区融化粒子,冰晶通过凇附过程增长,平均浓度为208 L-1,最大直径为450 μm;雷达反射率因子随高度降低至1500 m不断增大,在1200~1500 m高度保持不变,1200 m高度以下减小,未出现明显0℃亮带,速度谱宽随高度降低增大。
祁连山一次地形云降水微物理特征飞机观测
程鹏, 罗汉, 常祎, 甘泽文, 张丰伟, 刘维成, 陈祺, 冒立鑫
2021, 32(6): 691-705. DOI: 10.11898/1001-7313.20210605
摘要:
祁连山是我国西北地区重要的生态屏障,地形云是祁连山主要降水云系,加强对祁连山云微物理过程的认识,对科学有效开展人工增雨作业、改善生态环境具有重要意义。利用2020年8月29日祁连山一次地形云降水过程的飞机观测数据,研究祁连山地区夏季云降水过程的微物理特征。此次降水过程云系呈明显的分层结构,云底高度为4000 m,整层含水量较丰富,云水大值区出现在4500~5300 m高度,与云滴高浓度区对应,云水含量主要由粒子直径为15~20 μm的云滴粒子贡献。小云粒子和大云粒子平均浓度分别为7.54 cm-3和0.86 cm-3,有效直径平均值分别为11.02 μm和198.11 μm,呈现出浓度小、直径大的特征。云系翻越祁连山过程中南北坡云微物理特征有明显变化,北坡(背风坡)粒子浓度、直径和液态水含量明显大于南坡(迎风坡)。祁连山地区不同高度小云粒子谱呈单峰型分布,Gamma分布可较好拟合直径小于50 μm的云滴谱,直径大于50 μm的云粒子谱更符合幂指数分布。凝华和聚并是冰相层冰雪晶的增长机制,混合层冰晶增长以贝吉龙过程为主,并伴有凇附和聚并生长。
青藏高原中东部气溶胶特征的飞机观测
马学谦, 郭学良, 刘娜, 张玉欣, 韩辉邦, 康晓燕
2021, 32(6): 706-719. DOI: 10.11898/1001-7313.20210606
摘要:
利用2011年和2013年夏秋季在青藏高原中东部开展的11架次气溶胶特征飞机观测数据,分析气溶胶数浓度、数谱及核化相关特征。结果表明:受天气系统、地形和地表影响,观测区内气溶胶数浓度(Na)和体积直径(Dv)的垂直和水平分布差异较大,Na呈西北高、东南低,Dv低层大、高层小,局地中高层有沙尘。格尔木盛行东风时,云降水对低层气溶胶有清除作用,NaDv明显降低,6.2 km高度和7.2~7.4 km高度的中高空受高原大风或对流影响形成沙尘;盛行西风时,低层Dv以0.5~0.8 μm为主,随高度升高和风速增大Na升高,Dv变幅较小,6.2 km高度也有沙尘;不同天气系统影响下6.5 km高度以上均输入亚微米颗粒,Na达5×103 cm-3,8.0 km高度盛行东风时比西风时Na更高,Dv更小,谱垂直分布也有以上特征,整层输入以偏北或偏西路径为主。不同过饱和度测量云凝结核数浓度(Nccn)表明,除格尔木6.0 km高度以下核化率(Nccn/Na)在21%~47%外,其他观测区平均核化率介于1%~16%,6.0~8.5 km高度的核化率总体偏低;当Na增加时核化率明显下降,且过饱和度1%~2%,-15~-5℃层或粒径1~3 μm时的核化率相对偏高。
青藏高原夏季对流云微物理特征和降水形成机制
常祎, 郭学良, 唐洁, 卢广献, 亓鹏
2021, 32(6): 720-734. DOI: 10.11898/1001-7313.20210607
摘要:
青藏高原对我国天气、气候和水循环过程有重要影响。利用第三次青藏高原大气科学试验(TIPEX-Ⅲ)2014年7月在那曲地区的飞机观测数据,研究青藏高原夏季对流云和降水的微物理特征及降水形成机制。飞机探测的云系主要为初生或发展阶段的冰水混合云,云滴数浓度低于平原、海洋地区1~2个量级,云内存在大量大云滴和雨滴,过冷水含量高。大粒子(D≥50 μm)数浓度量级为100~101 L-1,云内上升气流速度集中在1~4 m·s-1。青藏高原云滴谱主要呈双峰型,云内冰相粒子多为密实、不透明的霰粒子,云内凇附过程显著。云内暖雨过程产生的大云滴和雨滴有利于冰相过程,尤其是凇附过程的产生,使得青藏高原云更易产生降水。此外,残留云系与对流云有着较为类似的微物理特征。
DMT机载云粒子图像形状识别及其应用
张荣, 李宏宇, 周旭, 李昊, 胡向峰, 夏强
2021, 32(6): 735-747. DOI: 10.11898/1001-7313.20210608
摘要:
利用机载云粒子探测设备入云进行观测是目前获取云粒子微物理特征最直接有效的手段。国内已有多家单位引进美国DMT(Droplet Measurement Technologies)公司的云粒子图像探头CIP(cloud imaging probe)。由于其配套软件不能输出逐个粒子的详细信息,在很大程度上限制了对云粒子图像探测数据的深入挖掘和分析。基于解析粒子图像原始数据,对粒子图像数据进行质量控制,并根据粒子形状几何特征将粒子形状分为8类(微小、线状、聚合状、霰状、球状、板状、枝状和不规则状)。利用2018年12月—2019年3月河南省3次冬季航测获取的灰度CIP探测数据,分析云粒子形状及各形状粒子面积的统计特征,并对比基于不同形状粒子的质量-尺度关系与将所有粒子视作球形液滴计算所得的粒子水凝物含量,发现后者超过前者约1个量级。
机载热线含水量仪探测数据校验方法
刘晓璐, 张元, 刘东升
2021, 32(6): 748-758. DOI: 10.11898/1001-7313.20210609
摘要:
机载含水量仪是目前云中液态水含量唯一的探测仪器,其准确性直接影响人工增雨作业条件判别。基于2015年和2017年四川盆地南部开展的10架次飞机云物理探测试验,考察机载热线含水量仪LWC-100探测数据发现存在异常极大值、负值数量多等问题。通过分析DMT(Droplet Measurement Technologies)公司云粒子探头(cloud droplet probe,CDP)、云粒子图像探头(cloud imaging probe,CIP)、降水粒子图像探头(precipitation imaging probe,PIP)数据,提出对入云前的干功率进行重新计算的3种方法:方法1以CDP探头的不同粒子尺度分档为标准,不低于某一档尺度的粒子数浓度大于0记为入云;方法2以CDP的数浓度大于10 cm-3为入云判定条件;方法3以CDP,CIP,PIP 3种探头探测的粒子数浓度同时大于0记为入云。结果显示:3种方法均有效纠正液态水含量不为0的情况,负值数量也较探测数据明显减少。方法1以不小于5 μm的粒子数浓度大于0记为入云,校验计算得到的液态水含量以负值数量和大小作为评价依据较方法2和方法3更优。