[1] Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525:47-55. doi:  10.1038/nature14956
[2] Met Office Science Strategy:2016-2021.London:UKMO, 2015.
[3] 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
[4] 陈德辉, 杨学胜, 张红亮, 等.多尺度非静力通用模式框架的设计策略.应用气象学报, 2003, 14(4):452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1
[5] 薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用.北京:科学出版社, 2008.
[6] Zhang R H, Shen X S.On the development of the GRAPES-A new generation of the National operational NWP system in China.Chin Sci Bull, 2008, 53(22):3429-3432. http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW200822002.htm
[7] 胡江林, 沈学顺, 张红亮, 等.GRAPES模式动力框架的长期积分特征.应用气象学报, 2007, 18(3):276-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070349&flag=1
[8] 伍湘君, 金之雁, 黄丽萍, 等.GRAPES模式软件框架与实现.应用气象学报, 2005, 16(4):539-546. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050468&flag=1
[9] Temperton C, Hortal M, Simmons A.A two-time-level semi-Lagrangian global spectral model.Q J R Meteorol Soc, 2001, 127:111-127. doi:  10.1002/(ISSN)1477-870X
[10] Gospodinov I, Spiridonov V, Geleyn J.Second-order accuracy of two-time-level semi-Lagrangian schemes.Q J R Meteorol Soc, 2001, 127:1017-1033. doi:  10.1002/(ISSN)1477-870X
[11] McDonald A.The Origin of Noise in Semi-Lagrangian Integrations//Seminar Proceedings on Numerical Methods in Atmospheric Models.1991, 2:308-334.
[12] Hortal M.The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model.Q J R Meteorol Soc, 2002, 128:1671-1687. doi:  10.1002/(ISSN)1477-870X
[13] Klemp J B, Dudhia J, Hassiotis A D.An upper gravity-wave absorbing layer for NWP applications.Mon Wea Rev, 2008, 136:3987-4004. doi:  10.1175/2008MWR2596.1
[14] Wood N, Staniforth A, White A, et al.An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations.Q J R Meteorol Soc, 2015, 140:1505-1520. http://adsabs.harvard.edu/abs/2014QJRMS.140.1505W
[15] Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave.J Geophys Res, 1997, 102:16663-16682. doi:  10.1029/97JD00237
[16] Clough S A, Shephard M W, Mlawer E J, et al.Atmospheric radiative transfer modeling:A summary of the AER codes.J Quant Spectrosc Radiat Transfer, 2005, 91:233-244. doi:  10.1016/j.jqsrt.2004.05.058
[17] Iacono M J, Delamere J S, Mlawer E J, et al.Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models.J Geophys Res, 2008, 113:1395-1400. https://www.researchgate.net/publication/238030140_Radiative_Forcing_by_Long-Lived_Greenhouse_Gases_Calculations_with_the_AER_Radiative_Transfer_Models
[18] Dai Y, Zeng X, Dickinson R E, et al.The Common Land Model (CLM).Amer Meter Soc, 2003, 84:1013-1023. doi:  10.1175/BAMS-84-8-1013
[19] Palmer T, Shutts G J, Swinbank R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization.Q J R Meteorol Soc, 1986, 112:1001-1039. doi:  10.1002/(ISSN)1477-870X
[20] McFarlane N A.The effects of orographically excited gravity waves on the general circulation of the lower stratosphere and troposphere.J Atmos Sci, 1987, 44:1775-1800. doi:  10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2
[21] Lott F, Miller M.A new sub-grid scale orographic drag parameterization:Its formulation and testing.Q J R Meteorol Soc, 1997, 123:101-127. doi:  10.1002/(ISSN)1477-870X
[22] 苏勇, 沈学顺, 张倩, 等.应用样条插值提高GRAPES模式物理过程反馈精度.应用气象学报, 2014, 25(2):202-211. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140210&flag=1
[23] Jakob C, Siebesma A P.A new subcloud model for mass-flux convection schemes-Influence on triggering, updraught properties and model climate.Mon Wea Rev, 2003, 131:2765-2778. doi:  10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2
[24] Bechtold P, Kohler M, Jung T, et al.Advances in simulating atmospheric variability with the ECMWF model:From synoptic to decadal time-scales.Q J R Meteorol Soc, 134, 634:1337-1351.
[25] Han J, Pan H L.Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System.Wea Forecasting, 2011, 26:520-533. doi:  10.1175/WAF-D-10-05038.1
[26] Han J, Pan H L.Sensitivity of hurricane intensity forecast to convective momentum transport parameterization.Mon Wea Rev, 2006, 134:664-674. doi:  10.1175/MWR3090.1
[27] Grant A.Cloud-base fluxes in the cumulus-capped boundary layer. Q J R Meteorol Soc, 2001, 127:407-421. doi:  10.1002/(ISSN)1477-870X
[28] Siebesma A P, Bretherton C S, Brown A, et al.A large eddy simulation intercomparison study of shallow cumulus convection.J Atmos Sci, 2003, 60:1201-1219. doi:  10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
[29] 刘艳, 薛纪善, 张林, 等.GRAPES全球三维变分同化系统的检验与诊断.应用气象学报, 2016, 27(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160101&flag=1