The Error Analysis of a Spherical Harmonic Expanding in Limited Regions
-
摘要: 以500 hPa高度场为例在有限区域内进行球谐函数的展开。结果表明:当纬向截点数L为64,且经圈截点为32时,对应于波数M=L/2=32的球谐展开误差最小。这时对4种有限区域计算的谱展前后的均方根误差都小于2.5位势米(0.04%),最大绝对误差都小于14位势米(0.23%)。有限区域谱展前后的均方根误差比全球范围的相应值要小2—3位势米,这主要是由于有限区域内纬向格距较小的缘故。
-
关键词:
- 球谐函数 数值预报 有限区域 天气
Abstract: The numerical computation of expanding a meteorological element in terms of spherical harmonic functions for five regions is carried out by using 500 hPa height observations. The calculated results show that all root-mean-square errors (RMSE) of spherical harmonic expansion are less than 2.5 gpm (0.04%) and the maximums of absolute error are less than 14 gpm (0.23%) for four limited regions with the number of longitudinal arid points L=64, while the number of Gauss discrete points in the latitudinal direction is 32 and the wave number M=L/2=32. The RMSE of the spherical harmonic expansion for limited areas are 2—3 gpm less than that for the globe. This is principally due to the longitudinal gridlength is shorter for the limited areas than that for the globe.
计量
- 摘要浏览量: 2906
- HTML全文浏览量: 140
- PDF下载量: 1436
- 被引次数: 0