江淮入梅前后大气环流的演变特征和西太平洋副高北跳西伸的可能机制
THE FEATURES OF ATMOSPHERIC CIRCULATION DURING MEIYU ONSET AND POSSIBLE MEHANISMS FOR WESTWARD EXTENSION (NORTHWARD SHIFT) OF PACIFIC SUBTROPICAL HIGH
-
摘要: 该文首先采用合成分析的方法研究了江淮入梅前后大尺度大气环流的演变特征和西太平洋副热带高压西伸北跳的可能机制。研究结果表明, 江淮入梅前期的最显著的特征是:副热带高压首先在太平洋中部增强北跳, 而后向西扩展导致太平洋副高西部脊 (120°E) 的增强北跳。进一步分析表明, 在太平洋中部副热带高压的增强北跳和西伸之前, 副热带高压南侧ITCZ中对流和孟加拉湾北部的对流活动明显并且都经历了一次增强活跃过程, 这意味着热带ITCZ和孟加拉湾北部对流的异常活跃可能对副热带高压的增强北跳西伸产生影响。全球大气环流模式模拟结果表明, 赤道中太平洋ITCZ中对流异常活跃不仅可导致副热带高压的增强北移, 而且还可导致副热带高压西伸, 与诊断分析结果相一致。Abstract: Through composite analysis, the features of the atmospheric circulation during Meiyu onset and possible mechanisms responsible for the westward extension and northward shift of the western Pacific Subtropical High are investigated. Results indicate that the most pronounced characteristics of the circulation evolution prior to the Meiyu onset are: the subtropical High intensifies first, jumps northward in the middle Pacific, and then extends westward, thus resulting in the reinforcement (northward migration) of the western part of the Pacific Subtropical High ridge at 120°E. The further study reveals that the enhancement (northward movement) and westward shift of the Subtropical High over the middle Pacific are closely related to the abnormally active convection in the ITCZ to the south and over the northern Bay of Bengal. A GCM simulation is performed to study the effects of abnormal convection over the middle equatorial Pacific on the Subtropical High and results show that the abnormal convection can result in both the enhancement (northward migration) of the Subtropical High over the middle Pacific and its westward extension as well, which are in agreement with diagnostic results.
-
表 1 南京气象学院气象台1979~1993年入梅日期统计表
-
[1] 周曾奎.江淮梅雨.北京:气象出版社, 1996. [2] 林元弼, 汤敏敏, 等编. 天气学. 南京: 南京大学出版社, 1988. [3] 陶诗言.东亚的梅雨与亚洲上空大气环流季节变化的关系.气象学报, 1971, 29 (2): http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195802006.htm [4] 柳崇健, 陶诗言.副热带高压北跳与月光 (CUSP) 突变.中国科学 (B辑), 1983, 5: 474~480. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198305010.htm [5] 缪锦海, 丁敏芳.热力强迫下大气平衡态的突变与季节变化.中国科学 (B辑), 1985, 1: 87~96. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198501012.htm [6] 王国民.副热带高压季节性跳动若干因子.气象学报, 1986, 44 (1): 50~61. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198601006.htm [7] 朱正心.副热带对流层高层夏季准定常涡旋系统动力成因的初步探讨.气象学报, 1987, 45 (1): 39~47. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198701005.htm [8] Murakami T, Longxun Chen, An Xie, et al. Eastward propagation of 30-60 day perturbation as revealed from outgoing longwave radiation data. J. Atmos, Sci., 1986, 43: 961~971. doi: 10.1175/1520-0469(1986)043<0961:EPODPA>2.0.CO;2 [9] 徐海明, 王谦谦. 1994年7月我国东部降水异常成因的数值研究.热带气象学报, 1997, 13 (3): 276~283. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX703.009.htm [10] 祝从文.东亚季风及其与热带海气相互作用年际变化关系研究: [博士论文].南京:南京气象学院. 1998. [11] Wu G X, Liu H, Zhao Y C, et al. A nine-layer atmosphere general circulation model and its performance. Advance Atm. Sci., 1996, 13 (1): 1~18. doi: 10.1007/BF02657024 [12] Liu H, Wu G X. Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB, Advance Atm. Sci., 1997, 14 (3): 289~308. doi: 10.1007/s00376-997-0051-8 [13] Simmonds I. A analysis of the "spinning" of a global circulation model. J Geophy Rev, 1985, 90: 5639~5660. doi: 10.1175/JPO2726.1 [14] Xue Y, Sellers P J, et al. A simplified biosphere model for global climate studies. J Climate, 1991, 4 (3): 345~365. doi: 10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2 [15] Ni Yunqi, Xu Haiming, Meng Xiao. A numerical study for the effect of tropical 40-50 day oscillation on Asia summer monsoon. Acta Meteor. Sinica, 1990, 4 (2): 146~156. http://mall.cnki.net/magazine/Article/QXXW199002001.htm