一种动态数据的新建模法及其预报应用
NEW APPROACH TO DYNAMIC DATA MODELING AND ITS APPLICATION TO PRECIPITATION FORECASTING
-
摘要: 文章提出了一种新的动态数据建模法, 利用观测的数据序列, 先用双向差分原理反导出一个非线性常微分方程。 以此作为微分动力核, 然后运用自忆性原理建立预报模式, 我们称之为数据机理自记忆模式(Data-based Mechanism Self-memory Model), 简称为数忆模式, 缩写为 DAMSM。 多个实例计算表明, 数忆模式的预报准确率是比较令人满意的, 给出了长江三角洲夏季降水年际预报的实例。Abstract: By use of an observed data series a new dynamic data modeling has been proposed. Taking a nonlinear ordinary differential equation which is retrieved from the data series based on the bilateral difference principle as a dynamic kernel, with the self-memorization principle a forecast model can be established, which is called the DAta-based Mechanistic Self-memory Model (DAMSM). Some computing cases show that the forecasting accuracy of the DAMSM is quite satisfactory. An example of inter-annual precipitation prediction in summer in the Yangtze delta is given.
-
[1] 丁裕国, 江志红. 气象数据时间序列信号处理. 北京:气象出版社, 1998. [2] 曹鸿兴. 大气运动的自忆性方程. 中国科学B辑, 1993, 23(1):104-112. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199301014.htm [3] Young P. Data-based mechanistic modeling, generalized sensitivity and dominant modeanalysis. Computer Physics Communication, 1999, 117:113-129. doi: 10.1016/S0010-4655(98)00168-4 [4] Steppeler J. The SO as an example of a simple, ordered subsystem of a complexchaotic system. J. Climate. 1997, 10(3):473-480. doi: 10.1175/1520-0442(1997)010<0473:TSOAAE>2.0.CO;2 [5] 林振山. 天津局地气候的反演建模及研究. 气象学报, 1995, 53(1):115-121. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.014.htm [6] 魏凤英, 曹鸿兴. 长期预测的数学模型及应用. 北京:气象出版社, 1990.