辐射参数化的变化对模式中期和月预报的影响
Impact of Changes in Radiation Parameterization on Model Medium-range and Monthly Forecasting
-
摘要: 在T106中期数值预报模式和T63气候模式中进行了两种辐射过程参数化的对比试验。目前在这两个模式中用作对照积分的辐射方案(OPE)是ECMWF的早期业务方案,而新的辐射方案(NEW)是ECMWF 1989年5月2日成为业务的版本。试验结果表明,OPE高估了短波水的吸收,导致太大的短波大气吸收和地表太小的向下短波辐射;OPE还低估了长波辐射冷却和大气顶的向外长波辐射(OLR);NEW增加了地表有效辐射能量和对流层总的冷却,产生了较大的湍流热通量,对流活动加强,降水量明显增加;NEW还使平流层温度偏暖得到矫正。业务平行试验的统计检验表明,NEW对4~7天中期预报有较显著的改进。Abstract: A comparison of two radiation parameterization schemes has been carried out in the T106 Medium-range NWP model and the National Climate Center’s climate model T63. The radiation scheme used for the control integration in the two models at present was the original ECMWF operational radiation scheme (OPE), and the new radiation scheme (NEW) was the version that became operational on May 2, 1989 in ECMWF. Results indicate that OPE overestimates the short-wave water absorptivity, which leads to too large short-wave atmospheric absorption and too small downward short-wave radiation at the surface; OPE also underestimates the long-wave radiative cooling and the outgoing long-wave radiation at the top of atmosphere (OLR). In NEW the radiative energy available at the surface and an overall cooling of the troposphere increase; large turbulent heat fluxes are generated; the convective activity is enhanced; and the precipitation clearly increases. The warm temperature bias in the stratosphere in OPE is corrected. The operational parallel statistical test indicates a more pronounced improvement to the medium-range forecast of 4—7 days.
-
表 1 试验例子
表 2 新辐射方案(NEW)与业务方案(OPE)的比较
表 3 两种辐射方案的距平相关系数(上表)和均方根误差统计(下表)(分析为1998 年12 月2~21 日)
-
[1] Morcrette J J, Fouquart Y. On systematic errors in parameterized calculation of longwave radiation transfer. Quart. J. Rey. Meteor. Soc., 1985,111:691~708. doi: 10.1002/qj.49711146903 [2] Scott N A, Chedin A. A fast line-by-line method for atmospheric absorption computations:The Automatized Atmospheric Absorption Atlas. J. Appl. Meteor., 1981,20:802~812. doi: 10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2 [3] Simmons A J, Burridge D M, Jarraud M, et al. The ECMWF medium-range prediction models:Development of the numerical formulations and the impact of increased resolution. Meteor. Atmos,Phys.,1988,40:28~60. [4] Tiedtke M, Gelegn J-F, Hollingsworth A, et al. ECMWF model: Parameterization of subgrid-scale processes. ECMWF Tech.Rep. 1979,No.10. [5] Geleyn J F, Hollingsworth A. An economical analytical method for the computation of the interaction between scattering and line absorption of radiation.Beitr. Phys. Atmos.,1979,52:1~16. [6] Ritter B. The impact of an alternative treatment of infrared radiation on the performance of the ECMWF forecast model. In: G Fiocco, Ed.IRS'84: Current Problems in Atmospheric Radiation, 1984. 277~280. [7] Slingo A, Slingo J M. The response of a general circulation model to cloud longwave radiative forcing Ⅰ:Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 1988,114:1027~1062. doi: 10.1002/(ISSN)1477-870X [8] Morcrette J J. Impact of changes to the radiation transfer parameterization plus cloud optical properties in the ECMWF model. Mon.Wea.Rew., 1990,118:847~872. doi: 10.1175/1520-0493(1990)118<0847:IOCTTR>2.0.CO;2 [9] Morcrette J J. Radiation and cloud radiative properties in the European Center for Medium Range Weather Forecasts forecasting system. J.Geophys.Res.,1991,96(D5): 9121~9132. doi: 10.1029/89JD01597