模式大气月尺度可预报性的对比研究
Contrast Study of Model Atmospheric Monthly-scale Predictability
-
摘要: 首先采用方差分析方法,研究了实际大气500 hPa高度场的月尺度可预报性,并进一步分析了不同空间尺度大气运动的可预报性及其对大气整体运动可预报性的影响;对ECMWF和国家气候中心T63谱模式分别模拟和预报的500 hPa高度场,也用同样的方法进行了研究。结果表明,欧洲中心和我国T63模式大气的可预报性均比实际大气可预报性小,特别是在对整体运动可预报性影响最大的0~3波部分,差异较大,说明改进模式对0~3波部分的预报能力,必将提高模式性能。Abstract: Based on the observed 500 hPa height, the monthly scale predictability of short-term climate variation by the method of Analysis of Variance (ANOVA) is studied, and the influences of the predictability of different scale movements on the whole predictability are also examined. The predictability of 500 hPa height simulated by the ECMWF T63 spectrum model and forecasted by the National Climate Center T63 spectrum model with the same method is researched. The results show that the atmospheric predictability of two models is much smaller than the actual atmospheric predictability, especially for the movements of wave number 0-3, which have the most important influence on the whole atmospheric movement. Therefore there is plenty of potential skill to improve the climate model if the forecasting of wave number 0-3 movements is improved.
-
[1] Shukla J, Gutzler D S. Interannual variability and predictability of 500mb geopotential heights over the northern hemisphere. Mon. Wea. Rev., 1983, 111: 1273~1279. [2] Trenberth K E. Potential predictability of geopotential heights over the southern hemisphere. Mon. Wea. Rev., 1984, 113: 54~64. [3] Shukla J. Dynamical predictability of monthly means. J. Atmos. Sci., 1981, 38(12): 2547~2572. [4] 赵彦, 郭裕福,袁重光,等. 短期气候数值预测可预报性问题. 应用气象学报, 2000,11(增刊): 64~71. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2000S1007.htm [5] 李维京. 月尺度动力延伸预报进展. 李维京,纪立人主编. 月动力延伸预报研究. 北京:气象出版社, 2000. 1~9. [6] 李崇银. 气候动力学引论(第二版). 北京: 气象出版社, 2000. 431. [7] Trenberth K E. Persistence of daily geopotential heights over the Southern Hemisphere. Mon. Wea. Rev., 1984, 113: 38~53. [8] Leith C E. The standard error of time-average estimates of climatic means. J. Appl. Meteor., 1973, 12: 1066~1069. [9] 龚建东. 统计与动力相结合改进月动力延伸预报的研究: [博士论文]. 甘肃: 兰州大学, 1999. [10] 陈伯民. 改进动力延伸月预报的一种新方法: [博士论文]. 北京: 中国科学院大气物理研究所, 2000.