冬小麦田午时冠层温度与气温和地温的关系
Relationships Among Wheat Surface Temperature, Air Temperature and Surface Ground Temperature at Noon in the Wheat Fields
-
摘要: 基于野外实测数据,分晴日、阴日及不区分阴晴3种情况,研究了湿润与较干冬小麦田午时冠层温度、气温和地温间的定量关系。结果表明:湿润麦田晴日使用气温预测冠温效果最好,基于最终模型估算冠温的平均误差仅1.03℃,标准差为1.26℃。较干麦田晴日与阴日用地温估算冠温效果最佳,基于最终模型估算冠温的平均误差分别为1.64,1.54 ℃;其估算冠温的标准分别为2.05,1.89℃。用本文统计建模法预测结果的误差低于目前用NOAA影像反演冠温时2~3℃的均方根误差。研究结果也说明使用气温和地温预测麦田冠温是切实可行的。这就为冠温数据的获取提供了廉价有效的新方法;同时也使利用遥感影像与地面气象站常规观测资料相结合的方法,在较大的区域范围内进行冬小麦需水预测成为可能。Abstract: The quantitative relationships among wheat surface temperature (TL), air temperature (Tɑ) and siol-surface temperature (TS) at noon in the wet and dry wheat fields were investigated based on field data. The data collected was divided into a training set and a validation set and three types of weather were categorized as clean, cloud and both. The results show that for the wet wheat field in clear days, the best results could be achieved using Tɑ to estimate TL; based on the final model, the average estimated error is 1.03oC and the RMS of estimated TL is 1.26 oC. For the dry wheat field in the clear or cloud days, TL could be well estimated with TS. The average estimated errors of the final model are 1.64 and 1.54 oC respectively and the RMS of estimated TL are 2.05 and 1.89 oC respectively. The RMS errors achieved are generally lower than those derived from NOAA digital images (2—3 oC). The results of this research show that it is feasible to forecast wheat surface temperature with air temperature and soil-surface temperature, too. It provides a new cheap effective means to get wheat surface temperature; at the same time, it is also possible to combine satellite image data with measured data from ground weather stations to predict the water requirement of winter over a larger region.
-
表 1 训练组冠温预测的初步模型
表 2 检验组检验效果
表 3 基于全部数据建立的最终模型及其参数
-
[1] 董振国.农田作物层温度初步研究--以冬小麦、夏玉米为例.生态学报, 1984, 4(2):141-148. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB198402004.htm [2] 蔡换杰, 张振华, 柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究.灌溉排水, 2001, 20(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200101000.htm [3] Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 1977, 13(3): 651-656. doi: 10.1029/WR013i003p00651 [4] 董振国.作物层温度与土壤水分的关系.科学通报, 1986, 31(8):608-610. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198608012.htm [5] Hurtado E, Artigao M M, Caselles V. Estimating maize (Zea mays) evapotranspiration from NOAA-AVHRR thermal data in the Albacete area, Spain. Int. J. Remote Sens. 1994, 15(10): 2023-2037. doi: 10.1080/01431169408954225 [6] Idso S B, Jackson R D, Reginato R J. Estimating evaporation: a technique adaptable to remote sensing. Science, 1975, 189:991-992. doi: 10.1126/science.189.4207.991 [7] Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int. J. Remote Sens. 1983, 4(2): 371-383. doi: 10.1080/01431168308948554 [8] Rao P K, 等编. 气象卫星--系统、资料及其在环境中的应用. 许健民, 等译. 北京: 气象出版社, 1994. 450-452. [9] 覃志豪, Zhang M, Karnieli A, et al.用陆地卫星TM6数据演算地表温度的单窗算法.地理学报, 2001, 56(4): 456-465. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200104008.htm [10] 中国科学院地理研究所编辑.中国地理基础数据, 野外定位试验站卷 (第2集), 辐射观测数据集.北京:科学出版社, 1989. 43-66.