留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度非静力通用模式框架的设计策略

陈德辉 杨学胜 张红亮 胡江林

陈德辉, 杨学胜, 张红亮, 等. 多尺度非静力通用模式框架的设计策略. 应用气象学报, 2003, 14(4): 452-461..
引用本文: 陈德辉, 杨学胜, 张红亮, 等. 多尺度非静力通用模式框架的设计策略. 应用气象学报, 2003, 14(4): 452-461.
Chen Dehui, Yang Xuesheng, Zhang Hongliang, et al. Strategy for designing a non-hydrostatic multi-scale community model dynamic core. J Appl Meteor Sci, 2003, 14(4): 452-461.
Citation: Chen Dehui, Yang Xuesheng, Zhang Hongliang, et al. Strategy for designing a non-hydrostatic multi-scale community model dynamic core. J Appl Meteor Sci, 2003, 14(4): 452-461.

多尺度非静力通用模式框架的设计策略

资助项目: 

863课题 2002AA104210

国家“十五”科技攻关课题 2001BA607B02

STRATEGY FOR DESIGNING A NON-HYDROSTATIC MULTI-SCALE COMMUNITY MODEL DYNAMIC CORE

  • 摘要: 针对目前国际上数值预报模式的最新发展趋势,综述了新形势下多尺度非静力通用数值预报模式框架的设计策略。目前世界上开发通用模式主要有两个途经,一是建立一个离散化方案和源程序代码共享的、全球和有限区通用的模式,二是建立一个单一的全球可变分辨率的模式。还从通用模式方程组的选取策略、模式网格属性的构造,时间积分方案、空间离散方案,垂直坐标的选取等方面进行了分析。
  • 图  1  变量的Charney-Phillips和Lorenz跳层分布

    (其中ωθπuv分别表示模式预报变量垂直速度、位温、Exner气压函数、水平风)

  • [1] Staniforth A, White A, Wood N, et al. Unified model documentation paper, No. 15, UKMO, 2002, personal communication.
    [2] Cote J, Gravel S, Methot A, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 1998a, 126: 1373-1395. doi:  10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO; 2
    [3] Cote J, Gravel S, Methot A, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 1998b, 126: 1397-1418. doi:  10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2
    [4] Cullen M J P. The unified forecast/climate model. Meteor. Mag., 1993, 122: 81-94.
    [5] Bubnova R, Gello G, Bernard P, et al. Integration of the fully elastic equations cast in hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/ALADIN NWP system. Mon. Wea. Rev., 1995, 123: 515-535. doi:  10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2
    [6] Fox-Rabinwitz M, Stenchikov G, Suarez M, et al. A finite-difference GCM dynamic core with a variable resolution stretched grid. Mon. Wea. Rev., 1997, 125: 2943-2968. doi:  10.1175/1520-0493(1997)125<2943:AFDGDC>2.0.CO;2
    [7] Krinner G, Genthon C, Li Z-X, et al. Studies of the Antarctic climate with a stretched grid generation circulation model. J. Geophys. Res., 1997, 102: 13, 731-13, 745. doi:  10.1029/96JD03356
    [8] Courtier P, Geleyn J F. A global numerical weather prediction model with variable resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 1998b, 114: 1321-1346.
    [9] Hardiker V. A global numerical weather prediction model with variable resolution. Mon. Wea. Rev., 1997, 125: 59-73. doi:  10.1175/1520-0493(1997)125<0059:AGNWPM>2.0.CO;2
    [10] Schmidt F. Variable fine mesh in the spectral global models. Beitr. Phys. Atmos., 1977, 50: 211-217.
    [11] Caian M, Geleyn J F. Some limits to the variable mesh solution and comparison with the nested LAM one, Quart. J. Roy. Met. Soc., 1997, 123: 743-766. doi:  10.1002/(ISSN)1477-870X
    [12] Sharma O P, Upadhyaya H, Braine-Bonnaire T H, et al. Experiments on regional forecasting using a stretched coordinate general circulation model. In: Short and Medium Range NWP, Proc. WMO/IUGG NWP Symposium, 1987, Tokyo, Japan, Met. Soc.Japan, 263-271.
    [13] Paegle J. A variable resolution global model based upon Fourier and finite element representation. Mon. Wea. Rev., 1989, 117: 583-606. doi:  10.1175/1520-0493(1989)117<0583:AVRGMB>2.0.CO;2
    [14] Xue M, Droegemeier K K, Wong V. The advanced regional prediction system (ARPS)-A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys., 2000, 75: 161-193. doi:  10.1007/s007030070003
    [15] Anthes R A, Warner T T. Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 1978, 106: 1045-1078. doi:  10.1175/1520-0493(1978)106< 1045:DOHMSF > 2.0.CO; 2
    [16] Bougeault P, Mascart P. The MESO-NH Atmospheric Simulation System: Scientific Documentation. CNRS, Meteo France, 2000, personal communication.
    [17] Miller M J, Pearce R P. A three-dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 1974, 100: 133-154. doi:  10.1002/(ISSN)1477-870X
    [18] Schlesinger R E. A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 1975, 32: 934-957. doi:  10.1175/1520-0469(1975)032<0934:ATDNMO >2.0.CO;2
    [19] Calrk T L. A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput Phys., 1977, 24: 186-215. doi:  10.1016/0021-9991(77)90057-2
    [20] Saito T Kato, Eito H. Documentation of the Meteorological Research Institute /Numerical Prediction Division Unified Nonhydrostatic Model. Forecast Research Department, Meteorological Research Institute, 2002, personal communication. (or http://www.mri-jma.go.jp.).
    [21] Klemp J B, Wilhelmson R B. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 1978, 35: 1070-1096. doi:  10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
    [22] Tap M C, White P W. A nonhydrostatic meso-scale model. Quart. J. Roy. Meteor. Soc., 1976, 102: 277-296. doi:  10.1002/(ISSN)1477-870X
    [23] Tanguay M, Robert A, Laprise R. A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 1990, 118: 1970-1980. doi:  10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2
    [24] Cullen M J P. A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model. Quart. J. Roy. Meteor. Soc., 1990, 116: 1253-1258. doi:  10.1002/(ISSN)1477-870X
    [25] Golding B W. The meteorological office mesoscale model. Meteor. Mag., 1990, 119: 81-96.
    [26] Skamarock W C, Klemp J B. The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elastic equations. Mon. Wea. Rev., 1992, 120: 2109-2127. doi:  10.1175/1520-0493(1992)120<2109:TSOTSN>2.0.CO;2
    [27] Staniforth A. Regional modeling: a theoretical discussion. Meteor. Atmos. Phys., 1997, 63: 15-29. doi:  10.1007/BF01025361
    [28] Cullen M J P. The use of dynamical knowledge of the atmosphere to improve NWWP models. In: Proceedings of ECMWF Workshop on Recent Development in Numerical Methods for Atmospheric Modelling, 1999, Shinfield Park, Reading, U.K., 418-441.
    [29] Purser R J, Leslie L M. An efficient interpolation procedure for high-order three-dimensional semi-Lagrangian models. Mon. Wea. Rev., 1991, 119: 2492-2498. doi:  10.1175/1520-0493(1991)119<2492:AEIPFH>2.0.CO;2
    [30] Nair R J, Cote J, Staniforth A. Cascade interpolation for semi-Lagrangian advection over the sphere. Quart. J. Roy. Meteor. Soc., 1999, 125: 1445-1468. doi:  10.1002/qj.497.v125:556
    [31] Mcdonald A, Bates J R. Improving the estimate of the departure point in a two-time-level semi-Lagrangian and semi-implicit model. Mon. Wea. Rev., 1987, 115: 737-739. doi:  10.1175/1520-0493(1987)115<0737:ITEOTD>2.0.CO;2
    [32] Temperton C, Staniforth A. An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc., 1987, 113: 1025-1039. doi:  10.1002/qj.49711347714
    [33] Hortal M. Aspects of the numerics of the ECMWF model. In: Proceedings of ECMWWF Workshop on Recent Development in Numerical Methods for Atmospheric Modeling, 1999, Shinfield Park, Reading, U.K., 127-143.
    [34] Fulton S R. Multigrid methods for elliptic problems: a review. Mon. Wea. Rev., 1986, 114: 943-959. doi:  10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2
    [35] Skamarock W C, Smolarkiewicz P K, Klemp J B. Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev., 1997, 125: 587-599. doi:  10.1175/1520-0493(1997)125<0587:PCRSFH>2.0.CO;2
    [36] Arakawa A. Computational design for long-term numerical integrations of the equations of atmospheric motion. J. Comput. Phys., 1966, 1: 119-143. doi:  10.1016/0021-9991(66)90015-5
    [37] Cullen M J P, Davies T, Mawson M H, et al. An overview of numerical methods for the next generation of NWP and climate models. In: Lin, C., R. Laprise, H. Ritchie, eds. Numerical Methods in Atmospheric and Ocean Modelling (The Andre Robert Memorial Volume), Canadian Meteorological and Oceanographic Society, 1997, Ottawa, Canada, 425-444.
    [38] Bates J R, Semazzi F H M, Higgins R W, et al. Integration of the shallow water equation on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 1990, 118: 615-627.
    [39] Arakawa A, Moorthi S. Baroclinic instability in vertically discrete systems. J. Atmos. Sci., 1987, 45: 1688-1707.
    [40] Leslie L M, Purser R J. A comparative study of the performance of various vertical discretization schemes. Meteor. Atmos. Phys., 1992, 50: 61-73. doi:  10.1007/BF01025505
    [41] QIAN Jian-Hua, Semazzi F H M, Scroggs J S. A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 1998, 126: 747-770. doi:  10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2
    [42] White A A, Bromley R A. Dynamically-consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. Roy. Meteor. Soc., 1995, 121: 399-418. doi:  10.1002/(ISSN)1477-870X
    [43] Gal-Chen T, Sommerville R C J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput.Phys., 1975, 17: 209-228. doi:  10.1016/0021-9991(75)90037-6
  • 加载中
图(1)
计量
  • 摘要浏览量:  3662
  • HTML全文浏览量:  749
  • PDF下载量:  1939
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-09-02
  • 修回日期:  2003-03-19
  • 刊出日期:  2003-08-31

目录

    /

    返回文章
    返回