留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻不同生长期稻田能量收支、CO2通量模拟研究

高志球 卞林根 陆龙骅 丁国安

高志球, 卞林根, 陆龙骅, 等. 水稻不同生长期稻田能量收支、CO2通量模拟研究. 应用气象学报, 2004, 15(2): 129-140..
引用本文: 高志球, 卞林根, 陆龙骅, 等. 水稻不同生长期稻田能量收支、CO2通量模拟研究. 应用气象学报, 2004, 15(2): 129-140.
Gao Zhiqiu, Bian Lingen, Lu Longhua, et al. Modeling of energy and CO2 fluxes during different growth periods over rice field by using SiB2. J Appl Meteor Sci, 2004, 15(2): 129-140.
Citation: Gao Zhiqiu, Bian Lingen, Lu Longhua, et al. Modeling of energy and CO2 fluxes during different growth periods over rice field by using SiB2. J Appl Meteor Sci, 2004, 15(2): 129-140.

水稻不同生长期稻田能量收支、CO2通量模拟研究

资助项目: 

国家自然基金重大项目“长江三角洲低层大气物理化学过程与生态系统的相互作用” 

MODELING OF ENERGY AND CO2 FLUXES DURING DIFFERENT GROWTH PERIODS OVER RICE FIELD BY USING SIB2

  • 摘要: 利用国家自然科学基金重大项目“长江三角洲低层大气物理化学过程与生态系统的相互作用”野外观测资料,将1999年常熟稻田水稻四个不同生长期(插秧、拔节、抽穗和成熟)的太阳辐射、水汽压、气温和水平风速及降水作为简化生物圈(SiB2)模式的5个强迫变量,在合理设计模式参数的前提下,分别模拟了上述四个阶段的能量收支、CO2通量。模拟结果表明:在水稻不同生长阶段的感热、潜热和下垫面热通量占净辐射的比例不同;CO2通量的模拟结果与1996年国际稻田试验结果相似。该研究为利用自动气象站网的资料估计各站能量收支、CO2通量、土壤水分平衡、以及土壤温度廓线提供了新证据。
  • 图  1  1999年常熟观测站水稻不同生长期能量平衡各分量随时间变化

    图  2  1999年常熟观测站水稻不同生长期稻田能量分配柱状图

    (a)插秧期(6月),(b)拔节期(7月),(c)抽穗期(9月),(d)成熟期(10~11月)

    图  3  1999年常熟观测站水稻不同生长期CO2 通量随时间变化

    图  4  1999年常熟观测站水稻不同生长期下垫面蒸散随时间变化

    (a)插秧期(6月),(b)拔节期(7月),(c)抽穗期(9月),(d)成熟期(10~11月)

    图  5  1999年9月抽穗期感热通量模拟值和测量值比较

    (a)插秧期(6月),(b)拔节期(7月),(c)抽穗期(9月),(d)成熟期(10~11月)

    图  6  模拟的拔节期冠层、土壤、深土温度随时间的变化和测量的实时降水

    图  7  模拟的拔节期土壤湿度分布廓线和测量的实时降水

  • [1] Harazono Y, Kim J, Miyata A, et al. Measurement of energy budget components during the International Rice Experiment (IREX) in Japan. Hydrological Processes, 1998, 12: 2018~2092.
    [2] Miyata A, Leuning R, Thomas O, et al. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 2000, 102: 287~303. doi:  10.1016/S0168-1923(00)00092-7
    [3] Katul G G, Leuning R and Kim J. Estimating CO2 source/sink distributions within a rice canopy using higher-order closure models. Boundary-Layer Meteorology, 2001, 98:103~125. doi:  10.1023/A:1018730118183
    [4] Sellers P J, Randall D A,Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. Journal of Climate, 1996a, 9:676~705.
    [5] Sellers P J,Los S O,Tucker C J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 1996b, 9:706~737.
    [6] Randall D A,Dazlich D A,Zhang C. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part III: The greening of the Colorado State University general circulation model. Journal of Climate, 1996, 9: 738~763.
    [7] Zhang C, Dazlich D A, Randall D A, et al. Calculation of the global land surface energy, water and CO2 fluxes with an off-line version of SiB2. J. Geophs. Res., 1996,101(D14): 19061~19075.
    [8] Schelde K, Kelliher F M, Massman W J, et al. Estimating sensible and latent heat fluxes from a temperate broad-leaved forest using the Simple Biosphere (SiB) model. Agric. For. Meteorol., 1997, 84: 285~295.
    [9] Doran J C, Hubbe J M, Liljegren J C, et al. A technique for determining the spatial and temporal distributions of surface fluxes of heat and moisture over the Southern Great Plains Cloud and Radiation Testbed. J. of Geophys. Res., 1998, 103(D6): 6109~6121.
    [10] Colello G D, Griver C, Sellers P J, et al. Modeling of energy, water, and CO2 flux in a temperate grassland ecosystem with SiB2: May-October 1987. Journal of the Atmospheric Sciences, 1998,55: 1141~1169. doi:  10.1175/1520-0469(1998)055<1141:MOEWAC>2.0.CO;2
    [11] Chae Namyi, Gao Zhiqiu and Kim Joon. Testing the energy budget closure in a Tibetan prairie using the version 2 of the Simple Biosphere Model (SiB2). Eos, Transactions, American Geophysical Union, 2000, 81(22): 5.
    [12] Gao Zhiqiu, Chae Namyi and Kim Joon. Simulation of Surface Temperature, Water Balance and Soil Wetness in the Tibetan Prairie Using the Simple Biosphere Model 2. The Proceeding of the 2nd International Workshop on TIPEX/GAME-Tibet, 2000. 13~16.
    [13] 高志球,卞林根,程彦杰,等.利用生物圈模型(SiB2)模拟青藏高原那曲草原近地面层能量收支.应用气象学报,2002,13(2): 129~141. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20020217&flag=1
    [14] Stull R B. Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers Dordreche,1988. 290, 380.
    [15] Monteith J L, Principles of Environmental Physics. American Elsevier Publishing Company, Inc. 1973. 33~38.
  • 加载中
图(7)
计量
  • 摘要浏览量:  4271
  • HTML全文浏览量:  589
  • PDF下载量:  1983
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-02-25
  • 修回日期:  2003-03-20
  • 刊出日期:  2004-04-30

目录

    /

    返回文章
    返回