SSM/I资料反演大范围地表湿度试验
RETRIEVING REGIONAL SOIL MOISTURE OVER CHINA FROM SSM/I MICROWAVE DATA
-
摘要: 利用SSM/ I遥感数据, 结合2002年汛期“973”外场观测资料及T106资料, 借助微波辐射传输正演模型, 通过物理反演原理提取SSM/ I低频19 GHz通道像元平均地表微波比辐射率, 然后利用地表微波辐射模型, 估算SSM/ I像元的地表湿度信息。以2002年8月中旬发生在长江流域的暴雨天气过程为例, 将反演得到的地表湿度信息与地面观测到的降水信息进行对比分析, 并与地面的洪涝特征进行对比分析, 得到了与地面降水观测结果较为一致的对比结果。Abstract: Remote sensing of soil moisture by microwave radiometry has been a subject of intensive studies in the past two decades. Following the studies done before, a new approach to retrieve surface layer soil moisture is accomplished, in which the passive microwave data from SSM/I, as well as AVHRR and ground observation data are used to retrieve surface microwave emissivity. The retrieved emissivity is further used to derive surface soil moisture. For getting the information about the mixed-pixel, the surface temperature, canopy percentage and surface roughness are involved, and the microwave emissivity of soil element in a pixel can retrieved. The emissivity of soil component in one pixel is better than average emissivity over the whole pixel when retrieval the surface moisture. The physical technique is also retrieved the surface microwave emissivity and surface moisture.
-
表 1 SSM/ I仪器性能指标
表 2 SSM/I分类特征量定义
表 3 SSM/ I分类判据
表 4 SSM/ I陆表温度反演方程中的系数
-
[1] 金亚秋.电磁散射和热辐射的遥感理论. 北京:科学出版社,1993. [2] Teng W L, Wang J R, Doraiswamy P C. Relationship between satellite index and regional soil moisture. Int J R S, 1993,14(13): 2483~2500. [3] Choudhury B J, Owe M, Goward S N, et al. Quantifying spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains. International Journal of Remote Sensing, 1987, 8: 177~192. doi: 10.1080/01431168708948625 [4] Owe M, de Jeu R, Walker J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Rem Sens, 2001, 39(8): 1643~1654. doi: 10.1109/36.942542 [5] Drusch M, Wood E F, Jackson T J. Vegetative and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the Southern Great Plains Hydrology Experiment 1997. Journal of Hydrometeorology, 2001,2: 181~192. doi: 10.1175/1525-7541(2001)002<0181:VAACFT>2.0.CO;2 [6] Hsu A Y, Jackson T J, O'Neil P E. Comparison of ESTAR and SSM/I Derived Surface Soil Moisture. In Proc: Int Geoscience and Remote Sensing Symp'99, Hamburg, Germany, 1999.1908~1910. [7] Heymsfield G A, Fulton R. Modulation of SSM/I microwave soil radiances by rainfall. Remote Sens Environ, 1992, 29: 187~202. https://ntrs.nasa.gov/search.jsp?R=19920048505 [8] Jackson T J. Soil moisture estimation using Spacial Sensor Microwave/Imager satellite data over a grassland region. Water Resour Res, 1997, 33:1457~1484. [9] Choudhury B J. Reflectivities of selected land-surface types at 19 and 37 GHz from SSM/I. Remote Sens Environ, 1993, 46:1~17. doi: 10.1016/0034-4257(93)90028-V [10] Kerr Y H, Njoku E G. A semiarid land surface as seen from space. IEEE Trans Geosci Remote Sens, 1990, 28:384~393. doi: 10.1109/36.54364 [11] Jones A S, VonderHaar T H. Retrieval of microwave surface emittance over land using coicincident microwave and infrared satellite measurements. J G R, 1997, 102:13609~13626. doi: 10.1029/97JD00797 [12] Weng F. A multi-layer discrete-ordinate method for vector radiative transfer in vertical-inhomogeneous, emitting and scattering atmosphere. Part I: Theory. J Quant Spectrosc Radiat Trans, 1992,47: 19~33. doi: 10.1016/0022-4073(92)90076-G [13] Weng F. A multi-layer discrete-ordinate method for vector radiative transfer in vertical-inhomogeneous, emitting and scattering atmosphere. Part II: Application. J Quant Spectrosc Radiat Trans, 1992, 47: 35~42. doi: 10.1016/0022-4073(92)90077-H [14] 谷松岩,邱红. 用星载先进微波探测器(AMSU)资料开展区域地表洪涝分类监测. 应用气象学报, 2003, 14(1):8~16. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030102&flag=1 [15] Weng F. Microwave land emissivity model developed for satellite data assimilation and remote sensing applications. Technocal Proceedings of The Eleventh International ATOVS Study Conference, 2000. 423~436. [16] Price J. Estimating vegetation amount from visible and near-infrared reflectances. Remote Sensing Environment, 1993, 41: 29~34. [17] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. INT J Remote Sensing, 1998, 19(8): 1533~1543. doi: 10.1080/014311698215333