中尺度数值模拟中的边界层多尺度湍流参数化方案
MULTI-SCALE TURBULENT PLANETARY BOUNDARY LAYER PARAMETERIZATION IN MESOSCALE NUMERICAL SIMULATION
-
摘要: 该文在多尺度湍流理论的研究成果基础上, 将边界层湍流风谱与平均量的梯度相联系, 建立了边界层多尺度湍流参数化子模式, 之后放入MM5模式中进行了个例模拟研究, 并与MM5模式附带的M RF边界层参数化、Blackadar高分辨率边界层参数化的模拟结果进行比较和分析。结果表明, 多尺度湍流理论能够反映出实际大气边界层中热量垂直输送的规律, 将其用于中尺度数值预报模式的边界层物理过程参数化是可行的; 多尺度湍流参数化在地表层和边界层内各个层次上都着重考虑含能量最大的涡的作用以及水平热力不均匀性的影响, 因此在地形和下垫面比较复杂的区域, 对中尺度天气系统的模拟有进一步发展的前景。Abstract: Based on the multi-scale turbulent theory the sub-model of Multi-scale turbulent planetary boundary layer parameterization is set up by analyzing the relation of the gradient of average wind and the spectrum of turbulence in atmospheric boundary layer. Then the submodel is applied in MM5 to simulate the storm rainfall. Meanwhile the result of simulating is compared to that of the boundary layer parameterization of MRF and Blackadar originally included in MM5. After simulating the heavy rainfall between Changjiang and Haihe in Jun 22nd, 2002, it shows that the effect of the physical process in atmospheric boundary layer on mesoscale rainstorm is obvious because the change on vertical transportation of the momentum, heat and vapour near ground result in great difference in wind in lower level of MM5 and have effect on the birth and development of mesoscale synoptic system. In additional, the result also shows the ability to forecast large scale weather system is relied on the initial field and the dynamical structure of numerical model. The physical process has less effect on the forecast ability of large scale synoptic system, but influence obviously the forecast ability of mesoscale synoptic system. On the several rainstorm simulating, the effect caused by turbulent exchange between ground layer and each layer in boundary layer on wind field in lower layer is obvious especially in the area with complex topographic and surface characters. Therefore, it has long-range future to apply Multi-scale turbulent boundary layer parameterization on simulating the mesoscale synoptic system. In general, it is feasible to apply Multi-scale turbulent theory on mesoscale numerical simulating. Introducing the turbulence σw, σT and the sizes of eddy make it possible that the vertical motion in atmospheric boundary layer not only directly relate to dynamic structure of ground layer, for example Z0, but also relate to the nonuniformity of heat structure in ground layer and every layer in atmospheric boundary layer, and it is just the advantage of Multi-scale turbulent boundary layer parameterization.
-
表 1 2002年6月22日08 :00~23日08:00 18个站点的实况和预报降水量及预报准确率
表 2 分别采用三种边界层参数化方案的MM5对4个暴雨个例模拟的结果
-
[1] 程麟生, 丑纪范.大气数值模拟.北京:气象出版社, 1991.106-107. [2] Pleim J E, Chang J S.A non-local closure model for vertical mixing in the convective boundary layer.Atmospheric Environment, 1992, 26A (6):965-981. http://www.sciencedirect.com/science/article/pii/096016869290028J [3] Deardorff J W. The contragradient heat flux in the lower atmosphere and in the laboratory. J Atmos Sci, 1966, 23:503-506. doi: 10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2 [4] Mellor G L, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci, 1974, 31: 1792-1806. doi: 10.1175/1520-0469%281974%29031%3C1791%3AAHOTCM%3E2.0.CO%3B2 [5] Stull R B. Transilient turbulence theory, Part Ⅰ:The concept of eddy mixing across finite distances. J Atmos Sci, 1984, 41:3351-3367. doi: 10.1175/1520-0469(1984)041<3351:TTTPIT>2.0.CO;2 [6] Stull R. Transilient turbulence theory, Part Ⅱ:Turbulent adjustment. J Atmos Sci, 1984, 41:3368-3379. doi: 10.1175/1520-0469(1984)041<3368:TTTPIT>2.0.CO;2 [7] Deardorff J W. Theoretical expression for the countergradient vertical heat flux. J Geophys Res, 1972, 77:5900-5904. doi: 10.1029/JC077i030p05900 [8] Stull R B, Driedonks A G M. Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations. Boundary-Layer Met, 1987, 40:209-239. doi: 10.1007/BF00117449 [9] Fiedler B H, Moeng C-H. A practical integral closure model for mean bertical transport of a scalar in a convective boundary layer. J Atoms Sci, 1985, 42:359-363. doi: 10.1175/1520-0469(1985)042<0359:APICMF>2.0.CO;2 [10] Blackadar A K. High Resolution Models of the Planetary Boundary Layer. In:Pfafflin and Ziegler, eds. Advances in Environmental Science and Engineering. New York:Gordon and Breach Sci. Pub., 1979, 1(1):50-85. [11] 刘小红, 洪钟祥.非均匀网格过渡湍流理论及其在大气边界层数值模拟中的应用.大气科学, 1995, 19:347-358. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK503.009.htm [12] 蒋维楣, 牟礼凤.复杂下垫面模拟域大气边界层非局地闭合模拟研究.大气科学, 1999, 23:25-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK901.003.htm [13] Mailhôt J, Benoit R. A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models. J Atmos Sci, 1982, 39:2249-2266. doi: 10.1175/1520-0469(1982)039<2249:AFEMOT>2.0.CO;2 [14] Troen I, Mahrt L. A simple model of the atmospheric boundary layer, sensitivity to surface evaporation. Bound Layer Meteor, 1986, 37:129-148. doi: 10.1007/BF00122760 [15] Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124:2322-2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 [16] 徐大海.多尺度大气湍流的扩散及扩散率.气象学报, 1989, 47(3):302-311. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198903006.htm [17] 徐大海. Lagrange与Euler时间积分尺度之间关系的统计动力学模型.气象学报, 1992, 50(2):138-151. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199202001.htm [18] 徐大海.关于不同尺度大气运动中的雷诺交换.气象学报, 1992, 50(3):257-271. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199203000.htm [19] 朱蓉, 徐大海, 卞林根, 等.南极近地层大气的热量逆梯度输送现象.气象学报, 2000, 58(2):214-222. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200002008.htm [20] 朱蓉, 徐大海.大气边界层热量输送的非局地多尺度湍流理论及试验研究.应用气象学报, 2005, 16:待发表. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050335&flag=1 [21] 赵明, 苗曼倩, 王彦昌.边界层气象学教程.北京:气象出版社, 1991.241-245. [22] Caughey S J, Palmer S G. Some aspects of turbulence structure through the depth of the convectimve boundary layer. Q J Roy Meteor Soc, 1979, 105: 811-827. doi: 10.1002/(ISSN)1477-870X [23] 赵德山, 徐大海, 李宗恺, 等.城市大气污染总量控制方法手册.北京:中国环境科学出版社, 1991.91-92, 104. [24] Hanna S R, et al. Handbook on Atmospheric Diffution. US Department of Energy, 1982. 13-14.