近年来大气气溶胶模式研究综述
A REVIEW OF THE CURRENT DEVELOPMENTOF ATMOSPHERIC AEROSOL MODELS
-
摘要: 该文对当前大气气溶胶模式的发展和应用作了简单的回顾和评述, 介绍了较流行的几个气溶胶热力学平衡模式和适用于城市-区域空气质量研究的气溶胶模式的特点, 并对发展一个完全的气溶胶动力-化学模式的复杂性进行了探讨, 指出未来气溶胶模式发展和改进还需要在有机气溶胶的形成和转化机制, 云、雾等条件下气溶胶的形成和转化, 以及复杂的气溶胶物理、化学过程与区域、全球模式的耦合等几个方面进行研究。Abstract: The development and utilizations of atmospheric aerosol models are briefly reviewed. The characteristics of some currently used gas-aerosol thermodynamic equilibrium models and the more complicated integrated dynamics-chemistry models are described, which are suitable for urban and regional air quality assessment. Also the complexity in developing a comprehensive dynamic-chemistry aerosol model are discussed, and some aspects for model development and improvement are indicated, which include the mechanism of organic aerosol formation and transformation, aerosol formation and transformation under cloudy or foggy conditions, and the coupling of complicated aerosol physical-chemical model with regional or global models.
-
表 1 几个气-粒平衡模式的特点
表 2 几个常用城市-区域尺度空气质量模式气溶胶模式的特点
-
[1] Dockery D W, Pope III C A, Xu X, et al. An association between air pollution and mortality in six U S cities. New England J Med, 1993, 329: 1753-1759. doi: 10.1056/NEJM199312093292401 [2] Schwartz J, Dockery D W, Neas L M. Is dailv mortality associated specifically with fine particles? J Air Waste Manag Assoc. 1996, 46: 927-939. doi: 10.1080/10473289.1996.10467528 [3] Intergovernmental Panel on Climate Change (IPCC). Climate Change 1995. In: Houghton J T et al. eds., New York: Cambridge Univ Press, 1996. [4] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. In: Houghton J T et al. eds., New York: Cambridge Univ Press, 2001. [5] Schwartz S, Andreae M O. Uncertainty in climate change caused by aerosol. Science, 1996, 272: 1121-1122. doi: 10.1126/science.272.5265.1121 [6] Kiehl J T, Briegleb B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 1993, 260: 311-314. doi: 10.1126/science.260.5106.311 [7] Sloane C S. Optical properties of aerosols of mixed composition. Atmos Environ, 1984, 18(4): 871-878. doi: 10.1016/0004-6981(84)90273-7 [8] Chu K J, Seinfeld J H. Formulation and initial application of a dynamic model for urban aerosols. Atmos Environ, 1975, 3: 375-402. http://www.sciencedirect.com/science/article/pii/0004698175901249 [9] Peterson T W, Seinfeld J H. Mathematical model for transport, inter-conversion and removal of gaseous and particulate air pollutants-application to the urban plume. Atmos Environ, 1977, 11: 1171-1184. doi: 10.1016/0004-6981(77)90093-2 [10] Gelbard F, Seinfeld J H. The general dynamic equation for aerosols: Theory and application to aerosols formation and growth. Jour of Colloid and Interface Science, 1979, 68: 363-382. doi: 10.1016/0021-9797(79)90289-3 [11] Gelbard F, Tambour Y, Seinfeld J H. Sectional representations for simulation aerosols dynamics. Jour of Colloid and Interface Science, 1980, 76: 541-556. doi: 10.1016/0021-9797(80)90394-X [12] Seigneur C, Pai P, Hopke P K, et al. Modeling atmospheric particulate matter. Environmental Science &Technology, 1999, 33: 80A-86A. http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&base=REPIDISCA&lang=p&nextAction=lnk&exprSearch=44820&indexSearch=ID [13] Wexler A S, Seinfeld J H. The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos Environ, 1990, 24A: 1231-1246. http://www.sciencedirect.com/science/article/pii/0960168690900885 [14] Quinn P K, Asher W E, Charlson R J. Equilibria of the marine multiphase ammonia system. Jour Atmos Chem, 1992, 14: 11-30. doi: 10.1007/BF00115219 [15] Wexler A S, Seinfeld J H. Analysis of aerosol ammonium nitrate: departure from equilibrium during SCAQS. Atmos Environ, 1992, 26A: 579-591. http://www.sciencedirect.com/science/article/pii/096016869290171G [16] Bassette M, Seinfeld J H. Atmospheric equilibrium model of sulfate and nitrate aerosols. Atmos Environ, 1983, 17(11): 2237-2252. doi: 10.1016/0004-6981(83)90221-4 [17] Schwartz S E, Freiberg J E. Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions. Atmosp Environ, 1981, 15: 1129-1144. doi: 10.1016/0004-6981(81)90303-6 [18] Stelson A W, Friedlander S K, Seinfeld J H. A note on the equilibrium relationship between ammonia and nitric acid and rticulate ammonium nitrate. Atmos Environ, 1979, 13: 369-371. doi: 10.1016/0004-6981(79)90293-2 [19] Stelson A W, Seinfeld J H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos Environ, 1982a, 16: 983-992. doi: 10.1016/0004-6981(82)90184-6 [20] Stelson A W, Seinfeld J H. Relative humidity and pH dependence of the vapor pressure of the ammonium nitrate-nitric acid solutions at 25 ℃. Atmos Environ, 1982b, 16: 993-1000. doi: 10.1016/0004-6981(82)90185-8 [21] Tanner R L. An ambient experimental study of phase equilibrium in the atmospheric system: aerosols H+, NH+4, SO2-4, NO-3, NH3(g), HNO3(g). Atmos Environ, 1983, 16: 2935-2942. [22] Bassette M, Seinfeld J H. Atmospheric equilibrium model of sulfate and nitrate aerosols-II. Particle size analysis. Atmos Environ, 1984, 18: 1163-1170. doi: 10.1016/0004-6981(84)90147-1 [23] Saxena P, Hudischewski A B, Seigneur C, et al. A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos Environ, 1986, 20(7): 1471-1483. doi: 10.1016/0004-6981(86)90019-3 [24] Pilinis C, Seinfeld J H. Continued development of a general equilibrium model for inorganic multi-component atmospheric aerosols. Atmos Environ, 1987, 21: 2453-2466. doi: 10.1016/0004-6981(87)90380-5 [25] Saxena P, Muller P K, Kim Y P, et al. Coupling thermodynamic theory with measurements to characterize acidity of atmospheric particulate. Aerosol Sci Technol, 1993, 19(3): 279. doi: 10.1080/02786829308959636 [26] Nenes A, Pandis S N, Pilinis C. Continued development and testing of new thermodynamic aerosol module for urban and regional air quality models. Atmos Environ, 1999, 33: 1553-1560. doi: 10.1016/S1352-2310(98)00352-5 [27] Kim Y P, Seinfeld J H, Saxena P. Atmospheric gas-aerosol equilibrium I: Thermodynamic model. Aerosol Science and Technology, 1993, 19: 157-181. doi: 10.1080/02786829308959628 [28] Wexler A S, Seinfeld J H. Second-generation inorganic aerosol model. Atmos Environ, 1991, 25A: 2731-2748. http://www.sciencedirect.com/science/article/pii/096016869190203J [29] Clegg S L, Brimblecombe P, Wexler A S. Thermodynamic model of the system H+-NH+4-Na+-SO2-4-NO-3-Cl--H2O at 298.15. Journal Phys Chem, 1998, 102: 2155-2171. doi: 10.1021/jp973043j [30] Kim Y P, Seinfeld J H. Atmosperic gas-aerosol equilibrium III:Thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Science and Technology, 1995, 22: 93-110. doi: 10.1080/02786829408959730 [31] Meng Z, Seinfeld J H, Saxena P, et al. Atmospheric gas-aerosol equilibrium IV: Thermodynamics of carbonates. Aerosol Science and Technology, 1995, 23: 131-154. doi: 10.1080/02786829508965300 [32] Jacobson M Z, Tabazadeh A, Turco R P. Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. J G R, 1996, 101: 9079-9091. doi: 10.1029/96JD00348 [33] Jacobson M Z. Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmos Environ, 1999, 33: 3635-3649. doi: 10.1016/S1352-2310(99)00105-3 [34] Ansari A S, Pandis S N. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos Environ, 1999, 33: 745-757. doi: 10.1016/S1352-2310(98)00221-0 [35] Pilinis C. Modeling atmospheric aerosols using thermodynamic arguments-a review. Global Nest: the INT. J, 1999, 1(1): 5-13. [36] Bromely L A. Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J, 1973, 19:313-320. doi: 10.1002/(ISSN)1547-5905 [37] Kusik C L, Meissner H P. Electrolytic activity coefficients in inorganic processing. AIChE Symp Ser, 1978, 173:14-20. [38] Pitzer K S. Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure Appl Chem, 1986, 58:1599-1610. https://www.degruyter.com/view/j/pac.1986.58.issue-12/pac198658121599/pac198658121599.xml [39] Stokes R H, Robinson R A. Interactions in aqueous non-electrolyte solutions: I. Solute-solvent equilibria. J Phys Chem, 1966, 70: 2126-2130. doi: 10.1021/j100879a010 [40] Tang I N, Munkelwitz H R, Davis J G. Aerosol growth studies-II. Preparation and growth measurements of mono-disperse salt aerosol. Journal of Aerosol Science, 1977, 8: 149-159. doi: 10.1016/0021-8502(77)90002-7 [41] Winkler P. The growth of atmospheric aerosol particles with relative humidity. Physica Scripta, 1986, 37: 223-230. [42] Zhang Y, Seigneur C, Seinfeld J H, et al. A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes. Atmos Environ, 2000, 34: 117-137. doi: 10.1016/S1352-2310(99)00236-8 [43] Hildemann L M, Russell A G, Cass G R. Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: experiment vs. Theory. Atmospheric Environment, 1984, 9: 1737-1750. http://www.sciencedirect.com/science/article/pii/0004698184903494 [44] Meng Z, Seinfeld J H. Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species. Atmos Environ, 1996, 30: 2889-2900. doi: 10.1016/1352-2310(95)00493-9 [45] Russell A G, McRae G J, Cass G R. Mathematical modeling of the formation and transport of ammonium nitrate aerosol. Atmos Environ, 1983, 17: 949-964. doi: 10.1016/0004-6981(83)90247-0 [46] Russell A G, McRae G J, Cass G R. The dynamics of nitric acid production and the fate of nitrogen oxides. Atmos Environ, 1985, 19: 893-903. doi: 10.1016/0004-6981(85)90234-3 [47] Russell A G, Cass G R. Verification of a mathematical model for aerosol nitrate and nitric acid formation and its use for control measure evaluation. Atmos Environ, 1986, 20: 2011-2025. doi: 10.1016/0004-6981(86)90342-2 [48] Pandis S N, Harley R A, Cass G R, et al. Secondary organic aerosol formation and transport. Atmos Environ, 1992, 26A: 2269-2282. http://cat.inist.fr/?aModele=afficheN&cpsidt=5512395 [49] Pilinis C, Seinfeld J H. Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmos Environ, 1988, 22:1985-2001. doi: 10.1016/0004-6981(88)90088-1 [50] McRae G J, Seinfeld J H. Development of a Second-Generation Mathematical Model for urban air pollution-II. Evaluation of model performance. Atmos Environ, 1983, 17: 501-522. doi: 10.1016/0004-6981(83)90124-5 [51] Meng Z, Dabdub D, Seinfeld J H. Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J G R, 1998, 103(D3): 3419-3435. doi: 10.1029/97JD02796 [52] Harley R A, Russell A G, McRae G J, et al. Continued development of a photochemical model and application to the Southern California Air Quality Study (SCAQS) intensive monitoring periods: Phase I. Report to the coordinating research council under Project SCAQS-8. Carnegie Mellon University, Pittsburgh, PA, and California Institute of Technology, Pasadena, CA, 1992. [53] Toon O B, Turco R P, Westphal D, et al, A multidimensional model for aerosols: Description of computational analogs, J Atmos Sci, 1988, 45: 2123-2143. doi: 10.1175/1520-0469(1988)045<2123:AMMFAD>2.0.CO;2 [54] Westphal D, Toon O B, Charson T N. A case study of mobilization and transport of Saharan dust. J Atmos Sci, 1988, 45: 2145-2175. doi: 10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2 [55] Kotz A, Memmesheimer M, Ebel A, et al. Modeling of the aerosol phase in the European Regional Acid Deposition Model (EURAD). In: EUROTRAC Workshop on Regional and Global Modeling of Minor Atmospheric Constituents. XVI General Assembly, Eur. Geophys. Soc., Wiesbaden, Germany, April 23-26, 1991. [56] Middleton P B. Denver Air Quality Modeling Study (DAQMS). In: Twelfth Annual Meeting, AM. Assoc. for Aerosol Res., Oak Brook, III, Oct. 11-15, 1993. [57] Binkowski F S, Shankar U. The regional particulate matter model 1: Model description and preliminary results. J G R, 1995, 100(D12): 26191-26209. doi: 10.1029/95JD02093 [58] Whitby K T. The physical characteristics of sulfur aerosols. Atmos Environ, 1978, 12: 135-159. doi: 10.1016/0004-6981(78)90196-8 [59] Ackermann I J, Hass H, Memmesheimer M, et al. Modal aerosol dynamics model for Europe: Development and first applications. Atmos Environ, 1998, 32(17): 2981-2999. doi: 10.1016/S1352-2310(98)00006-5 [60] Wexler A S, Lurman F W, Seinfeld J H. Modeling urban and regional aerosols, I: Model development. Atmos Environ, 1994, 28: 531-546. doi: 10.1016/1352-2310(94)90129-5 [61] Gery M W, Whitten G Z, Killus J P, et al. User's guide for the urban airshed model. Volume I: User's manual for UAM (CB-IV), SYSAPP-90/018a, final report prepared for the South Coast Air Quality Management District for Contract Number 89112A, 1989. [62] Lurman F W, Wexler A S, Pandis S N, et al. Modeling urban and regional aerosol-II: Application to California's south coast air basin. Atmos Environ, 1997, 31: 2695-2715. doi: 10.1016/S1352-2310(97)00100-3 [63] Jacobson M Z, Turco R P, Jensen E J, et al. Modeling coagulation among particles of different composition and size. Atmos Environ, 1994, 28A: 1327-1338. https://www.researchgate.net/publication/222476129_Modeling_Coagulation_Among_Particles_of_Different_Composition_and_Size [64] Jacobson M Z, Turco R P. Simulation condensational growth, evaporation, and coagulation of aerosols using a combined moving stationary size grid. Aerosol Sci Technol, 1995, 22: 73-92. doi: 10.1080/02786829408959729 [65] Jacobson M Z. Development and application of a new air pollution modeling system-II: Aerosol module structure and design. Atmos Environ, 1997, 31(2): 131-144. doi: 10.1016/1352-2310(96)00202-6 [66] Yu F, Turco R P. Contrail formation and impacts on aerosol properties in aircraft plumes: Effects of fuel sulfur content. G R L, 1998a, 25:313-316. doi: 10.1029/97GL03695 [67] Yu F, Turco R P. The formation and evolution of aerosols in stratospheric aircraft plumes: Numerical simulations and comparisons with observations. J G R, 1998b, 103: 25915-25934. doi: 10.1029/98JD02453 [68] Russell A, Dennis R. NARSTO critical review of photochemical models and modeling. Atmos Environ, 2000, 34: 2283-2324. doi: 10.1016/S1352-2310(99)00468-9 [69] Chang J S, Jin S, Li Y, et al. The SARMAP Air Quality Model, Final Report, Air Resources Board. California Environmental Protection Agency, Sacramento, CA, 1997a. [70] Kumar N, Oan M T, Russell A G. Multiscale air quality modeling: application to Southern California. J G R, 1994, 99: 5385-5397. doi: 10.1029/93JD03197 [71] Byun D W, Ching J K S. Science algorithms of the EPA Model-3 Community Multiscale Air Quality (CMAQ) modeling system. EPA Report No. EPA-600/R-99/030, Office of Research and Development, U.S EPA, Washington D.C., 1999. [72] 赵春生, 秦瑜.海洋大气边界层中大气气溶胶产生和发展的数值模拟.见:周秀骥主编.中国地区大气臭氧变化及其对气候环境的影响 (二).北京:气象出版社, 1997.215-224. [73] 黄美元, 王自发.东亚地区黄沙长距离输送模式设计.大气科学, 1998, 22(4):625-637. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.021.htm [74] Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV. J Phys Chem Ref Data, 1992, 21:1125-1571. doi: 10.1063/1.555918 [75] Demore W B, Sanders S P, Golden D M, et al. Chemical kinetic and photochemical data for use in stratospheric modeling. Evaluation number 9, Rep 90-1, Jet Propul. Lab, Pasadena, California, 1990. [76] Gery M W, Whitten G Z, Killus J P, et al. A photochemical kinetics mechanism for urban and regional scale computer modeling. J G R, 1989, 94: 12925-12956. doi: 10.1029/JD094iD10p12925 [77] Harley R A, Russell A F, McRae G J, et al. Photochemical modeling of the southern California Air Quality Study. Environ Sci Technol, 1993, 27: 378-388. doi: 10.1021/es00039a019 [78] Xu J, Bergin M H, Yu X, et al. Measurement of aerosol chemical, physical and radiative properties in the Yangtze Delta region of China. Atmos Environ, 2002, 36: 161-173. doi: 10.1016/S1352-2310(01)00455-1
表(2)
计量
- 摘要浏览量: 3428
- HTML全文浏览量: 659
- PDF下载量: 3702
- 被引次数: 0