留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山丘地形的陆面过程及边界层特征的模拟

胡小明 刘树华

胡小明, 刘树华. 山丘地形的陆面过程及边界层特征的模拟. 应用气象学报, 2005, 16(1): 13-23..
引用本文: 胡小明, 刘树华. 山丘地形的陆面过程及边界层特征的模拟. 应用气象学报, 2005, 16(1): 13-23.
Hu Xiaoming, Liu Shuhua. Numerical simulation of land surface process and atmosphere boundary layer structure over small hill underlying surface. J Appl Meteor Sci, 2005, 16(1): 13-23.
Citation: Hu Xiaoming, Liu Shuhua. Numerical simulation of land surface process and atmosphere boundary layer structure over small hill underlying surface. J Appl Meteor Sci, 2005, 16(1): 13-23.

山丘地形的陆面过程及边界层特征的模拟

资助项目: 

国家自然科学基金项目 40275004

NUMERICAL SIMULATION OF LAND SURFACE PROCESS AND ATMOSPHERE BOUNDARY LAYER STRUCTURE OVER SMALL HILL UNDERLYING SURFACE

  • 摘要: 将模式NP-89的陆面过程参数化方法应用到北京大学的三维复杂地形中尺度数值模式中, 得到了一个较理想的三维陆面过程及边界层模式, 利用这个改进的三维模式对20 km×20 km范围的山丘地形的陆面过程及边界层特征进行了数值模拟。模拟结果表明, 由于地形阻挡所造成山后的湍流较山前强, 进而造成近地面温度梯度和感热支出小, 最终造成山后的温度比山前的温度明显偏高; 而且随着山高的增加, 这种现象更加明显, 即该模式对山丘地形条件下的陆面过程和大气边界层特征具有较强的模拟能力; 模拟结果合理, 对研究过山气流形成机制、起伏地形大气边界层物理特征和污染物的扩散具有理论和应用价值。
  • 图  1  模式模拟地形高度 (单位:m)

    图  2  18:00垂直剖面风速矢量图

    (单位:m·s -1, 格距为1 km)

    图  3  垂直剖面湍流能量等值线图

    (单位:m 2·s -2, 格距为1 km)

    图  4  山前 (a) 和山后 (b) 的湍流能量廓线日变化

    图  5  湍流交换系数的垂直剖面图

    (单位:m2·s-1, 格距为1 km)

    图  6  山前 (a) 和山后 (b) 温度廓线的日变化

    图  7  山前山后的地面与参考层(10cm)温差日变化

    图  8  山前山后感热通量日变化图

    图  9  18:00垂直剖面等位温线图

    (单位:K, 格距为1 km)

    图  10  100 m高度水平风场 (单位:m·s-2, 格距为1 km)

    图  11  山高增加后的垂直剖面湍流场

    (单位:m-2·s-2, 格距为1km)

    图  12  山高增加后山前山后感热通量日变化图

    图  13  山高增加后的垂直剖面等位温线 (单位:K)

    表  1  初始水汽廓线

  • [1] Smith R B.Hydrostatic f low over mountains.Adv In Geophys, 1989, 31:1-41. doi:  10.1016/S0065-2687(08)60052-7
    [2] Durran D R.Another look at downslope wind storms.Part I:On the development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid.J Atmos Sci, 1986, 43:2527-2543. doi:  10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2
    [3] 刘红年, 蒋维楣.细网格非静力二维高阶闭合模式对山体流场特征的模拟分析.高原气象, 1994, 13(4):430-438. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX404.005.htm
    [4] 齐瑛.受对流边界层影响的过山气流.力学学报, 1994, 26(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB401.000.htm
    [5] 陈明, 傅抱璞.太行山东坡焚风的数值模拟.高原气象, 14(4):443-450.
    [6] 刘辉志, 桑建国.对流边界层中过山气流的数值模拟.气候与环境研究, 2001, 6(3):305-311. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200103004.htm
    [7] 桑建国, 温市耕.大气扩散的数值计算.北京:气象出版社, 1992.331-372.
    [8] Noilhan J, Planton S.A simple parameterization of land surface process for meteorological models.Mon Wea Rev, 1989, 117:536-549. doi:  10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
    [9] 佟华, 桑建国.北京海淀地区大气边界层的数值模拟研究.应用气象学报, 2002, 13(特刊):51-60. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1005.htm
    [10] Yamada T.Simulations of nocturnal drainage flows by aq2-L turbulence closure model.J Atmos Sci, 1983, 40:91-106. doi:  10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2
    [11] 刘树华, 张云雁, 李森, 等.草原下垫面土壤-植被-大气物质, 能量输送数值模拟研究.中国沙漠, 1998, 18(增刊4):58-68.
    [12] 刘树华, 李洁, 文平辉.城市及乡村大气边界层结构的数值模拟.北京大学学报 (自然科学版), 2002, 38(1):90-97. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200201019.htm
    [13] 贝佛尔.土壤物理学.北京:农业出版社, 1988.350-360.
    [14] 中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室.中国科学院北京气象塔观测资料集 (第一集).1993.8-202.
    [15] Cuxart J, Yague C, Morales G.Stable atmospheric boundary-layer experiment in Spain (SABIES98):a report.Boundary Layer Meteorology, 2000, 96(3):337-369. doi:  10.1023/A:1002609509707
  • 加载中
图(13) / 表(1)
计量
  • 摘要浏览量:  4390
  • HTML全文浏览量:  582
  • PDF下载量:  2031
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-08-19
  • 修回日期:  2003-12-26
  • 刊出日期:  2005-02-28

目录

    /

    返回文章
    返回