留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同辐射传输方案对中尺度降水影响的对比分析

周广强 赵春生 丁守国 秦瑜

周广强, 赵春生, 丁守国, 等. 不同辐射传输方案对中尺度降水影响的对比分析. 应用气象学报, 2005, 16(2): 148-158..
引用本文: 周广强, 赵春生, 丁守国, 等. 不同辐射传输方案对中尺度降水影响的对比分析. 应用气象学报, 2005, 16(2): 148-158.
Zhou Guangqiang, Zhao Chunsheng, Ding Shouguo, et al. A study on impacts of different radiative transfer schemes on mesoscale precipitations. J Appl Meteor Sci, 2005, 16(2): 148-158.
Citation: Zhou Guangqiang, Zhao Chunsheng, Ding Shouguo, et al. A study on impacts of different radiative transfer schemes on mesoscale precipitations. J Appl Meteor Sci, 2005, 16(2): 148-158.

不同辐射传输方案对中尺度降水影响的对比分析

资助项目: 

天气灾害形成机理与预测理论研究” G1998040911

A STUDY ON IMPACTS OF DIFFERENT RADIATIVE TRANSFER SCHEMES ON MESOSCALE PRECIPITATIONS

  • 摘要: 在MM5非静力稳定中尺度气象模式中引进了建立在δ-4流近似和相关-k分布基础上的对云水、雨水、冰晶和霰的辐射特性进行详细描述的辐射传输方案。新建立的辐射传输方案和MM5中原有的辐射传输方案在华南暴雨中的模拟结果相互比较,并与天气实况的对比表明:辐射在中尺度暴雨中起着重要的作用;辐射传输方案对云辐射特性描述的准确程度对于地面降水影响是明显的;不同的辐射传输方案对地面降水的影响存在较大的差异,并且这些差异在白天比在夜间明显;辐射传输过程对地面降水影响的差异主要表现在降水中心上,而对降水的地理分布改变很小;相对而言,不同的辐射传输方案之间对短波描述的差异对地面降水的影响明显,而对长波描述差异的影响不大;新辐射传输方案能够在一定程度上改进MM5对中尺度降水的模拟能力。
  • 图  1  地面观测站分布

    图  2  24 h累积降水量模拟结果 (单位:mm)(a) 无辐射, (b) 简单冷却, (c) 云辐射, (d) CCM2辐射, (e) 新建辐射传输方案, (f) 观测结果

    图  3  不同辐射传输方案降水量的比较

    (a) 区域累积积分降水量Q, (b) 各辐射传输方案与无辐射方案Q差异百分率, (c) 区域积分降水强度IQ, (d) 各辐射传输方案与无辐射方案IQ的差异百分率

    图  4  降水中心地面累积降水量随时间变化 (a) 中心A, (b) 中心B

    表  1  辐射对降水作用的研究结果

    表  2  各辐射传输方案积分结果与无辐射结果的最大差异

  • [1] Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a two-dimensional model. J Atmos Sci, 1989, 46: 3077~3107. doi:  10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [2] Chen S, Cotton W R. The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J Atmos Sci, 1988, 45: 3897~3910. doi:  10.1175/1520-0469(1988)045<3897:TSOASE>2.0.CO;2
    [3] Ackerman T P, Liou K N, Valero F P J, et al. Heating rates in tropical anvils. J Atmos Sci, 1988, 45:1606~1623. doi:  10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2
    [4] Lilly D K. Cirrus outflow dynamics. J Atmos Sci, 1988, 45: 1594~1605. doi:  10.1175/1520-0469(1988)045<1594:COD>2.0.CO;2
    [5] 丁守国. 积云过程中云与辐射相互作用研究: [硕士学位论文]. 北京: 北京大学, 2001.
    [6] Gray W M, Jacobson Jr R A. Diurnal variation of deep cumulus convection. Mon Wea Rev, 1977, 105: 1171~1188. doi:  10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2
    [7] Fu Q, Liou K N. Interactions of radiation and convection in simulated tropical cloud clusters. J Atmos Sci, 1995, 52: 1310~1328. doi:  10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2
    [8] Kay M J, Box M A, Trautmann T, et al. Actinic flux and net flux calculation in radiative transfer-a comparative study of computational efficiency. J Atmos Sci, 2001, 58: 3752~3761. doi:  10.1175/1520-0469(2001)058<3752:AFANFC>2.0.CO;2
    [9] 张国栋.冰云短波辐射特性参数化.应用气象学报, 1997, 8(3):284~292. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970341&flag=1
    [10] 佟彦超, 刘长盛.卷云与水云的短波透射与反射特性.大气科学, 1998, 22(1):32~48. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK801.004.htm
    [11] 汪宏七, 赵高祥.云微物理特性对云光学和云辐射性质的影响.应用气象学报, 1996, 7(1):36~44. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960105&flag=1
    [12] 石广玉.大气辐射计算的吸收系数分布模式.大气科学, 1998, 22(4):659~673. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.024.htm
    [13] 张华. 非均匀路径相关K-分布方法的研究: [博士学位论文]. 北京: 中国科学院大气物理研究所, 1999.
    [14] 刘艳, 高歌, 成天涛, 等.中国地区云对地气系统太阳短波吸收辐射强迫的气候研究.气象科学, 2000, 20(3):260~269. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200003003.htm
    [15] 罗云峰, 周秀骥, 李维亮.大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展, 1998, 13(6):572~581. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ806.008.htm
    [16] Wang Hongqi, Zhao Gaoxiang. Parameterization of long wave optical properties for water cloud. Adv Atmos Sci, 2002, 19(1):25~34. doi:  10.1007/s00376-002-0031-y
    [17] 郑庆林, 胡一红, 古瑜.云、辐射对中期数值预报影响的数值试验.应用气象学报, 1994, 5(4):409~417. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940473&flag=1
    [18] Tripoli G J, Cotton W R. Numerical study of an observed orogenic mesoscale convection system. Part II: analysis of governing dynamics. Mon Wea Rev, 1989, 117: 305~328. doi:  10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2
    [19] Chin H N S. The impacts of the ice phase and radiation on a midlatitude squall line system. J Atmos Sci, 1994, 51:3320~3343. doi:  10.1175/1520-0469(1994)051<3320:TIOTIP>2.0.CO;2
    [20] Tao W K, Lang S, Simpson J, et al. Mechanisms of Cloud-radiation interaction in the tropics and midlatitudes. J Atmos Sci, 1996, 53: 2624~2651. doi:  10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2
    [21] Chin H N S, Fu Q, Bradley M M, et al. Modeling of a tropical squall line in two dimensions and its sensitivity to environment winds and radiation. J Atmos Sci, 1995, 52: 3172~3193. doi:  10.1175/1520-0469(1995)052<3172:MOATSL>2.0.CO;2
    [22] Fu Q, Liou K N. Parameterization for the radiative properties of cirrus cloud. J Atmos Sci, 1993, 50: 2008~2025. doi:  10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    [23] Xu K M, Randall D A. Impacts of interactive radiative transfer on the microscopic behavior of cumulus ensembles. Part I: Radiation parameterization and sensitivity test. J Atmos Sci, 1995, 52:785~799. doi:  10.1175/1520-0469(1995)052<0785:IOIRTO>2.0.CO;2
    [24] Xu K M, Randall D A. Impacts of interactive radiative transfer on the microscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J Atmos Sci, 1995, 52:800~817. doi:  10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2
    [25] Tao W K, Simpson J, Soong S T. Numerical simulation of a subtropical squall line over Taiwan Strait. Mon Wea Rev, 1991, 119: 2699~2723. doi:  10.1175/1520-0493(1991)119<2699:NSOASS>2.0.CO;2
    [26] Dharssi I, Kershaw R, Tao W K. Sensitivity of a simulated tropical squall line to longwave radiation. Quart J Roy Meteor Soc, 1997, 123: 187~206. doi:  10.1002/(ISSN)1477-870X
    [27] Churchill D D, Houze Jr R A. Effect of radiation and turbulence on the diabatic heating and water budget of the stratiform region of a tropical cloud cluster. J Atmos Sci, 1991, 48: 903~922. doi:  10.1175/1520-0469(1991)048<0903:EORATO>2.0.CO;2
    [28] Miller R A, Frank W M. Radiative forcing of simulated tropical cloud clusters. Mon Wea Rev, 1993, 121: 482~498. doi:  10.1175/1520-0493(1993)121<0482:RFOSTC>2.0.CO;2
    [29] Hack J J, Boville B A, Briegleb B P, et al. Description of the NCAR Community Climate Model (CCM2). NCAR Technical Note, NCAR, 1993.
    [30] Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 1997, 102: 16663~16682. doi:  10.1029/97JD00237
    [31] Lacis A A, Hansen J E. A parameterization for the absorption of solar radiation in the earth\'s atmosphere. J Atmos Sci, 1974, 31: 118~133. doi:  10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
    [32] Stephens G L. Radiation profiles in extended water clouds. Part I: Theory and part II: Parameterization Scheme. J Atmos Sci, 1978, 35: 2111~2132. doi:  10.1175/1520-0469(1978)035<2111:RPIEWC>2.0.CO;2
    [33] Stephens G L. Review: the parameterization of radiation for numerical weather prediction and climate models. Mon Wea Rev, 1984, 112: 826~867. doi:  10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2
    [34] Rodgers C D. The use of emissivity in atmospheric radiation calculation. Quart J Roy Meteor Soc, 1967, 93: 43~52. doi:  10.1002/(ISSN)1477-870X
    [35] Joseph J H, Wiscombe W J, Weinman J A. The Delta-Eddington approximation for radiative flux transfer. J Atmos Sci, 1976, 33: 2452~2459. doi:  10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
    [36] Ramanathan V, Downey P. A nonisothermal emissivity and absorptivity formulation for water vapor. J Geophys Res, 1986, 91: 8649~8666. doi:  10.1029/JD091iD08p08649
    [37] Liou K N, Fu Q. A simple formulation of the delta-four-stream approximation for radiative transfer parameterization. J Atmos Sci, 1988, 45: 1940~1947. doi:  10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2
    [38] Fu Q, Liou K N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci, 1992, 49: 2139~2156. doi:  10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
    [39] Fu Q, Liou K N. Parameterization for the radiative properties of cirrus cloud. J Atmos Sci, 1993, 50: 2008~2025. doi:  10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    [40] Fu Q, Krueger S K, Liou K N. Interactions of radiation and convection in simulated tropical cloud clusters. J Atmos Sci, 1995, 52: 1311~1328. doi:  10.1175/1520-0469%281995%29052%3C1310%3AIORACI%3E2.0.CO%3B2
    [41] 楼小凤. MM5模式的新显式云物理方案的建立和耦合及原微物理方案的对比分析: [博士学位论文]. 北京: 北京大学, 2002.
    [42] Sui C H, Li X, Lau K M. Radiative convective processes in simulated diurnal variations of tropical oceanic convection. J Atmos Sci, 1998, 55: 2345~2357. doi:  10.1175/1520-0469(1998)055<2345:RCPISD>2.0.CO;2
  • 加载中
图(4) / 表(2)
计量
  • 摘要浏览量:  3089
  • HTML全文浏览量:  621
  • PDF下载量:  2199
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-10-08
  • 修回日期:  2004-02-20
  • 刊出日期:  2005-04-30

目录

    /

    返回文章
    返回