AMSU资料揭示的不同强度热带气旋热力结构特征
THE THERMAL STRUCTURE CHARACTERISTICS OF TROPICAL CYCLONES WITH DIFFERENT INTENSITY REVEALED BY AMSU DATA
-
摘要: 运用美国NOAA-16极轨气象卫星高分辨率的AMSU探测资料和邻近时刻的NCEP数值预报资料,对2002年6月10日至9月10日发生在西北太平洋上的12个热带气旋生命史中的部分时次作了热力结构分析。发现AMSU资料不仅能够敏感地探测到不同强度热带气旋的多种地球物理参数,并且通过对这些参数的进一步处理,能够展示出它们各自重要的热力结构特征;由不同强度热带气旋对流层中上层暖异常区的高度、强度、范围和形状的差异以及其对流层上层温度负距平的高度、大小和分布不同,结合相应的湿度场结构特征,可以探寻其热力结构与气压变化之间的内在联系,通过这种热力结构的变化趋势可以进一步揭示出热带气旋未来的强度变化。
-
关键词:
- 先进的微波探测器(AMSU);
- 热带气旋;
- 热力结构
Abstract:The data from NOAA/16 AMSU and the numerical prediction data from NCEP are used to study the thermal structure of tropical cyclones (TCs) occurred over the northwest Pacific Ocean during June 10—September 10 in 2002. The results show that various geophysical parameters of the different intensities of tropical cyclones can be detected sensitively and measured further by AMSU data. Therefore, some aspects of the warm core associated with these storms can be found. In addition, the substantial correlations between this satellite-depicted warm temperature anomaly at the mid-and upper-troposphere and surface pressure at the storm center can be found by the differences from height, magnitude, scale and form of temperature anomaly regions of the different intensity tropical cyclones at the target levels, the differences of height, size and distribution of negative temperature anomaly at upper troposphere and the structure characteristics of relevant humidity field. By the thermal structure of tropical cyclones, the intensity changes of tropical cyclones in the future and be acquired further. At the same time, the results show that for the temperature anomaly the magnitude, height and area of typhoon's warming is the most, and the strong tropical storm's follow it, while those of the tropical storm are the lowest. At far as the height of the negative temperature anomaly at the upper troposphere, typhoon is the topmost, the follow is strong tropical storm and the tropical storm is the lowest.
-
Key words:
- AMSU;
- Tropical cyclone;
- Thermal structure
-
图 2 4号强热带风暴(黄蜂)各物理量的纬向垂直剖面图(说明同图 1)
图 3 4号台风(浣熊)各物理量的纬向垂直剖面图(说明同图 1)
-
[1] 张婉佩, 陈善敏.台风内区中尺度结构研究[J].中国气象科学研究院院刊, 1988, 3(2):206~214. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198802011.htm [2] 王作述, 何煜光.近海台风结构和能量平衡的对比研究[J].应用气象学报, 1992, 3(2):190-197, . http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920233&flag=1 [3] Rosenkranz P W, Staelin D H, Grody N C. Typhoon June (1975) viewed by a scanning microwave spectrometer. J Geohpys Res, 1978, 83: 1857~1868. doi: 10.1029/JC083iC04p01857 [4] Grody N, Hayden C M, Shen W C, et al. Typhoon June winds estimate from scanning microwave measurements at 55.45 GHz. J Geohpys Res, 1979, 84: 3689~3695. doi: 10.1029/JC084iC07p03689 [5] Grody N, Shen W C. Observation of Hurricanes of Hurricane David (1979) Using the Microwave Sounding Unit. NOAA Tech Rep, NESS 88. Washington DC: Nat Earth Sat Service, 1982. [6] Kidder S Q, Gray W M, Vonder Haar T H. Estimating tropical cyclone central pressure and outer winds from satellite microwave data. Mon Wea Rev, 1978, 106: 144~152. [7] Velden C S. Observational analyses of North Atlantic tropical cyclones from NOAA polar-orbiting satellite microwave data. J Appl Meteor, 1989, 28: 59~70. doi: 10.1175/1520-0450(1989)028<0059:OAONAT>2.0.CO;2 [8] Velden C S, Goodman B M, Merrill R T. Western North Pacific tropical cyclone intensity estimation from NOAA polar-orbiting satellite microwave data. Mon Wea Rev, 1991, 119: 159~168. doi: 10.1175/1520-0493(1991)119<0159:WNPTCI>2.0.CO;2 [9] Kidder S Q, Goldberg M D, Zehr R M. Satellite analysis of the tropical cyclones using the Advanced Microwave Sounding (AMSU). BAMS, 2000, 81: 1241~1259. doi: 10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2