近百年长江中下游梅雨的年际及年代际振荡
INTERANNUAL AND INTERDECADAL OSCILLATIONS OF MEIYU OVER THE MIDDLE-LOWER REACHES OF THE CHANGJIANG RIVER FOR 1885 —2000
-
摘要: 利用一种小波变换和统计检验相结合进行气候突变检测的新方法, 分析了1885~2000年长江中下游梅雨强度序列多尺度层次的谱系结构, 并对各层次的突变点进行统计显著性检验; 利用小波能量密度研究了梅雨强度年际及年代际振荡随时间的演变及其方差贡献。结果表明:就大尺度而言, 近百年梅雨强度以1941年为界分成强、弱两种状态, 同时, 在不同时间尺度的层次上, 还存在多个突变点, 例如, 在梅雨较强的1885~1941年阶段中, 含有两个梅雨相对弱的时段, 在梅雨较弱的1942~2000年阶段中亦存在1991~2000年梅雨相对强的时段; 2~3年和6~7年振荡在长江中下游梅雨强度的年际变化中占有较大方差贡献, 其中1978~1987年和1996~2000年段2~3年振荡的方差贡献较大, 1920~1932年段6~7年振荡的方差贡献明显; 在长江中下游梅雨强度的年代际变化中, 23~24年和36~37年振荡的方差贡献在20世纪40年代以后比较突出。Abstract: A scheme is proposed for detecting multi-scale climate accidents by means of the combination of Morlet wavelet transform and statistical validation with which to examine multiscale spectrum structure of Meiyu intensities in the timeseries for 1885-2000 over middle-lower reaches of the Changjiang River, and make significance tests of the abrupt change points at different scales. Also the time-dependent evolution and variance contribution of Meiyu intensity series are investigated using wavelet energy density technique. Results show that on a large-scale basis, 1941 can be viewed as the division between high and low intensities and multiple abrupt change points appears at diverse time scales, for instance, during the 1885-1941 for stronger rainfall stage two phases of relatively weak rainfall occur and in 1942-2000 weak rainfall stage the 1991-2000 relatively high rainfall occur; the 2-3 and 6-7 years oscillations have higher variance in interannual variation over the study basin, the 2-3 years oscillations have pronounced variance contribution in 1978-1987 and 1996-2000, so are the 6-7 years oscillations in 1920-1932; the 23-24 and 36-37 years oscillations have higher variance contribution after the 1940s on an interdecadal basis.
-
表 1 多尺度层次的突变点及其检验
-
[1] Allan R, Lindesay J, Parker D. El Nino Southern Oscillation and Climatic Variability. Victoria:CSIRO Publishing, 1996. 1-416. https://www.researchgate.net/publication/294093568_El_Nino_Southern_Oscillation_and_climatic_variability [2] Reason C J C, Mulenga H. Relationships between south African rainfall and SST anomalies in the southwest Indian Ocean. Int J of Climatol, 1999, 19:1651-1673. doi: 10.1002/(ISSN)1097-0088 [3] Gray W M. Atlantic seasonal hurricane frequency, Part I:El Nino and 30 mb quasi-biennial oscillation influences. Mon Wea Rev, 1984, 112:1649-1667. doi: 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 [4] Kuaff J A. The Modulation of Monsoon Intensity by Stratospheric QBO. Proceedings of the Seventeenth Annual Climate Diagnostic Workshop, 19-23 October, 1992. 306-311. [5] Schlesinger M, Ramankutty N. An oscillation in the global climate system of period 65-70 years. Nature, 1994, 367:723-726. doi: 10.1038/367723a0 [6] 徐群, 杨义文, 杨秋明.长江中下游116年梅雨 (一).暴雨·灾害, 2001, 44-53. [7] 徐群.近46年江淮下游梅雨期的划分和演变特征.气象科学, 1998, 18(4):315-328. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199804001.htm [8] 魏凤英, 张京江.近百年长江中下游梅雨变化的统计特征分析.应用气象学报, 2004, 15(3):313-321. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040340&flag=1 [9] Kumar P, Foufoula-Georgiou E. Wavwlet Analysis in Geophysics:An Introduction. In Wavelets in Geophysics. SanDiego:Academic Press, 1994. 1-43. [10] 刘太中, 荣平平, 刘式达, 等.气候突变的子波分析.地球物理学报, 1995, 38(2):158-162. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX502.002.htm [11] Jiang Jian Ming, Roy Mendelssohn, Franklin Schwing, et al. Coherency detection of multiscale abrupt changes in historic Nile flood levels. Geophys Res Lett, 2002, 29(8):112-1-112-4. doi: 10.1029/2002GL014826/suppinfo [12] 李峰, 何立富.长江中下游地区夏季旱涝年际、年代际变化的可能成因研究.应用气象学报, 2002, 13(6):718-726. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020694&flag=1