GRAPES模式动力框架的长期积分特征
Characteristics of GRAPES Dynamical Core in Long Term Integration
-
摘要: 通过考虑动量表面拖曳并利用牛顿松弛方法将温度松弛到纬向对称的温度场, 对GRAPES模式的动力框架进行了长期时间积分试验。通过统计分析其积分结果表明:GRAPES模式的动力框架可以模拟出大气环流的基本特征; 随着分辨率的提高, GRAPES模式动力框架的模拟结果显示出收敛的特性; 虽然GRAPES模式动力框架采用的是能量不守衡的半隐式半拉格朗日时间积分方案, 但长期时间积分试验表明其能量基本保持稳定。这些结果显示使用GRAPES模式动力框架作大气环流和气候研究的大气动力框架是可行的, 同时也为进一步改进GRAPES模式动力框架提供了线索和依据。Abstract: In order to evaluate the characteristics of the dynamical core of GRAPES (Global/Regional Assimilation and PrEdiction System) and to verify whether the GRAPES dynamical core can be taken as a framework of AGCM, the long time integration has been carried out with GRAPES dynamical core followed by the benchmark test similar to the technique introduced by Held and Suarez. The GRAPES has a finite-difference dynamical core with fully compressible, non-hydrostatic framework and semi-implicit and semi-lagrangian (SISL) time integration scheme using latitude and longitude horizontal coordinate as well as following terrain height vertical coordinate. The computational design uses two simple physical processes to represent physics processes in the model during the time integration. The first process is to relax the model variant, potential temperature, to a prescribed potential temperature field which is a function of latitude and height during the model time integration. Following Held and Suarez, the second one is the momentum drag in the lower troposphere to consume the kinetic energy in the model atmosphere. The GRAPES dynamical core runs with 31 levels in vertical direction and 3 horizontal resolutions:1.25°, 2.5°and 5.0°latitude or longitude. The benchmark tests integrate for 1460 days under each horizontal resolution and the last 1000 days data are analyzed by discarding the previous 460 day results. The statistic results show that the GRAPES dynamical core can reproduce basic features of atmospheric circulation, including reasonably realistic zonal mean temperature and its eddy variance as well as zonal-mean wind and its eddy variance. A single westerly jet is generated with maximum strength of roughly 28 m/s near 45°latitude in the tropopause. And eddy temperature variance shows two middle latitude maxima, one in the low troposphere and the other above tropopause. The GRAPES dynamical core also shows stability for the energy and momentum as well as vertical wind speed during the long term integration although SISL scheme does not observe the conservations. The GRAPES dynamical core has convergence features along with increasing resolution, although 5.0° resolution in latitude and longitude may be too coarse to represent the circulation details. Finally, the sensitivity to non-hydrostatic is discussed. The results indicate that it is feasible using the GRAPES frame as a dynamical core for AGCM and climate investigation. The numerical experiments provide clues and evidences for GRAPES dynamical core improvement also.
-
Key words:
- benchmark tests;
- AGCM;
- dynamical core;
- numerical experiments
-
图 2 1.25°×1.25°31层GRAPES动力框架长时间 (1000 d, 下同) 积分的纬向平均温度 (单位:K)(a), 纬向风速 (单位:m/s)(b) 和纬向平均的垂直速度 (单位:m/s)(c)
Fig. 2 The averaged fields with 1000 d simulations produced by GRAPES dynamical core using the resolution of 1.25°×1.25°grid points and 31 levels (a) zonal mean temperature (unit:K), (b) mean zonal wind (unit:m/s), (c) zonal vertical speed (unit:m/s)
图 4 1.25°×1.25°31层GRAPES模式动力框架长时间积分的物理量随时间变化 (a) 总能量, (b) 纬向风动量, (c) 单位质量的垂直速度动能 (全球平均)
Fig. 4 The variables produced by the 1.25°×1.25°grid points and 31 levels GRAPES dynamical core with 1000 d simulation (a) general energy, (b) the zonal wind moment, (c) kinetic energy produced by vertical movement per unit mass (averaged by global)
图 6 不同水平分辨率的GRAPES动力框架长时间积分纬向平均风速 (单位:m·s-1)(a)2.5°×2.5°, (b)5.0°×5.0°
Fig. 6 Same as in Fig. 5 but for zonal wind (unit:m·s-1)(a)2.5°×2.5°, (b)5.0°×5.0°
-
[1] 陈德辉, 薛纪善.数值天气预报业务模式现状与展望.气象学报, 2004, 62(5):623-633. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200405009.htm [2] 薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):601-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1 [3] 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1 [4] 伍湘君, 金之雁, 黄丽萍, 等.GRAPES模式软件框架与实现.应用气象学报, 2005, 16(4):539-546. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050468&flag=1 [5] 黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050346&flag=1 [6] 叶成志, 欧阳里程, 李象玉, 等.GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析.热带气象学报, 2006, 16(4):539-546. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604011.htm [7] 李耀辉, 赵建化, 薛纪善, 等.基于GRAPES的西北地区沙尘暴数值预报模式极其应用研究.地球科学进展, 2005, 20(9): 999-1011. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200509009.htm [8] 章建成, 刘奇俊.GRAPES模式不同云物理方案对短期气候模拟的影响.气象, 2006, 32(7):3-12. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607000.htm [9] Arakawa A. Computational design for long-term numerical integration of the equations of fluid motion:Two-dimensional incompressible flow, part Ⅰ. J Comput Phys, 1966, 1:119-143. doi: 10.1016/0021-9991(66)90015-5 [10] Zhang Xuehong, Liang Xinzhong. Comparison and examination of dynamic frameworks of IAP and OSU AGCM. Adv Atmos Sci, 1989, 6:265-274. doi: 10.1007/BF02661533 [11] 左瑞亭, 张铭, 张东凌, 等.21层大气环流模式IAP AGCM-Ⅲ的设计及气候数值模拟:Ⅰ动力框架.大气科学, 2004, 28(5): 659-674. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200405001.htm [12] 梁丹青, 张铭, 曾庆存.分块地形坐标大气环流模式框架的计算稳定性及数值试验.大气科学, 2005, 29(3):354-362. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200503002.htm [13] Wang Bin, Wan Hui, Ji Zhongzhen, et al. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China Ser A Mathematics, 2004, 47:4-21. doi: 10.1360/04za0001 [14] 王斌, 季仲贞.大气科学中的数值新方法及其应用.北京:科学出版社, 2006:200-205. [15] Gates W L. The atmospheric model intercomparison project. Bull Amer Meteor Soc, 1992, 73:1962-1970. doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2 [16] Williamson D L, Drake J B, Hack J J, et al. A standard test for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys, 1992, 102:211-224. doi: 10.1016/S0021-9991(05)80016-6 [17] Held I H, Suarez M J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Amer Meteror Soc, 1994, 75:1825-1830. doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2 [18] Boer G J, Denis B. Numerical convergence of the dynamics of a GCM. Climate Dyn, 1997, 13, 359-374. doi: 10.1007/s003820050171 [19] Polvani L M, Scott R K, Thomas S J. Numerical converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon Wea Rev, 2004, 132:2539-2552. doi: 10.1175/MWR2788.1 [20] Trenberth K E, Olson J G. ECMWF Global Analyses 1979-1986: Circulation Statistics and Data Evalution. NCAR/TN-300+STR, NCAR Technical Note, 1988.