留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达定量测量降水在佛子岭流域径流模拟中的应用

张亚萍 程明虎 徐慧 王嘉涛

张亚萍, 程明虎, 徐慧, 等. 雷达定量测量降水在佛子岭流域径流模拟中的应用. 应用气象学报, 2007, 18(3): 295-305..
引用本文: 张亚萍, 程明虎, 徐慧, 等. 雷达定量测量降水在佛子岭流域径流模拟中的应用. 应用气象学报, 2007, 18(3): 295-305.
Zhang Yaping, Cheng Minghu, Xu Hui, et al. Application of radar rainfall estimates to runoff simulation in Foziling Basin. J Appl Meteor Sci, 2007, 18(3): 295-305.
Citation: Zhang Yaping, Cheng Minghu, Xu Hui, et al. Application of radar rainfall estimates to runoff simulation in Foziling Basin. J Appl Meteor Sci, 2007, 18(3): 295-305.

雷达定量测量降水在佛子岭流域径流模拟中的应用

资助项目: 

国家自然科学基金项目 40575009

国家自然科学基金项目 40375007

Application of Radar Rainfall Estimates to Runoff Simulation in Foziling Basin

  • 摘要: 以位于合肥雷达西南100 km的佛子岭闭合流域 (1813 km2) 及该流域的6个子流域为研究区域, 用地面雨量计和雷达-雨量计联合校准两种方法进行流域面雨量计算, 将两种方法计算的面雨量分别作为TOPMODEL (TOPography based hydrological MODEL) 降水-径流模型的输入, 对模型输出结果进行比较。个例分析表明:雷达-雨量计联合测量降水的精度是否高于单独用地面雨量计计算的精度, 在一定程度上取决于用于校准的地面雨量计数目和代表性; 即使雨量计计算的整个流域面雨量与雷达-雨量计联合校准后的结果接近, 对应子流域面雨量的结果仍然会存在差别; 不同方法计算的某一子流域面雨量的差别越大, 则TOPMODEL水文模型输出的该子流域径流深的差别也越大。
  • 图  1  研究区域示意图(a)合肥雷达周围地形图以及佛子岭流域的位置,(b)合肥雷达仰角0.5°上阻塞率以及佛子岭流域的位置,(c)基于1:250000 DEM的佛子岭流域6个子流域划分示意图及雨量计分布图(实心方块表示评估站,实心圆和空心圆表示校准站),(d)佛子岭流域三维视图

    Fig. 1  Presentation of the study area (a) relief map of the Hefei radar and the location of Foziling basin, (b) beam blockage of Hefei radar at elevation of 0.5° and location of the Foziling basin, (c) a sketch map of the 6 subcatchments of the Foziling basin from 1:250000 DEM and the location of the rain gauge network (solid squares for evaluation and circles for adjustment), (d) the 3D view of the Foziling basin

    图  2  佛子岭流域中6个子流域的三维视图

    (a)子流域1,(b)子流域2,(c)子流域3,(d)子流域4,(e)子流域5,(f)子流域6

    Fig. 2  The 3D views of 6 subcatchments in the Foziling basin

    (a) subcatchment 1, (b) subcatchment 2, (c) subcatchment 3, (d) subcatchment 4, (e) subcatchment 5, (f) subcatchment 6

    图  3  雨量计(a)及雷达(b)测值与评估值比较散点图

    (图中给出了回归线、相关系数R、雨量测值个数N及均方根误差ERMS

    Fig. 3  Scatterplots of the hourly precipitation calculated from the rain gauge data (a) and the radar data (b)

    (the regression line, correlation coeffecient R between compared quangtites, the number of calculated rainfall values N, and the root mean squared error ERMS are also given in each plot)

    图  4  2003年6月20日至7月12日平均校准因子随时间变化 (a)6个雨量计参加校准, (b)2个雨量计参加校准

    Fig. 4  Temporal variations of the averaged adjustment factors from June 20 to July 12, 2003 (a)6 rain gauges for adjustment, (b)2 rain gauges for adjustment

    图  5  2003年6月20日01:00到7月12日00:00佛子岭水库实测和模拟入库流量过程 (a) 降水输入为6个雨量计计算的各子流域面雨量 (上部为相应的佛子岭流域面雨量), (b) 降水输入为雷达联合6个雨量计反演的各子流域面雨量 (上部为相应的佛子岭流域面雨量)

    Fig. 5  Observed and simulated discharges from 01:00 on June 20 to 00:00 on July 12, 2003 for the Foziling basin (a) from the raingauge-based mean areal rainfall of subcatchments using 6 rain gauges (the upper curve shows the correspongding mean areal rainfall for the Foziling basin), (b) from the adjusted radar-based mean areal rainfall of subcatchments using 6 rain gauges (the upper curve shows the correspongding mean areal rainfall for the Foziling basin)

    图  6  2003年6月20日01:00到7月12日00:00佛子岭流域中子流域1的流域面雨量及模拟流域出口流量

    Fig. 6  The mean areal rainfall estimates and simulated discharges from 01:00 on June 20 to 00:00 on July 12, 2003 for subcatchmennt 1 of the Foziling basin

    表  1  佛子岭流域中各子流域的面积和河道出口距离

    Table  1  List of the subcatchments with their corresponding area and distance to the outlet of the Foziling basin

    表  2  雨量计测值精度评估表

    Table  2  Evaluation of the hourly precipitation calculated from the rain gauge data

    表  3  雷达测值精度评估表

    Table  3  Evaluation of the accumulated hourly precipitation derived from the radar data

    表  4  不同降水输入情况下佛子岭流域出口流量模拟的模型效率系数 (E)

    Table  4  Coefficient of efficiency (E) of hydrographs simulated using rain gages and radar estimates for the Foziling basin

    表  5  2003年6月20日至7月12日佛子岭流域及子流域的面雨量和模拟径流深统计

    Table  5  Statistics of mean areal rainfall estimates and simulated runoff depths for the Foziling basin with its 6 subcatchments from June 20 to July 12, 2003

  • [1] Anagnostou E N, Krajewski W F. Calibration of the WSR-88D precipitation processing subsystem. Wea Forecasting, 1999, 13:396-406. https://www.researchgate.net/publication/252452408_Calibration_of_the_WSR-88D_Precipitation_Processing_Subsystem
    [2] Finnerty B D, Smith M B, Seo D J, et al. Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs. J Hydrol, 1997, 203:21-38. doi:  10.1016/S0022-1694(97)00083-8
    [3] 万玉发, 杨洪平, 肖艳娇, 等.多普勒天气雷达站址视程的客观分析技术.应用气象学报, 2000, 11(4):440-447. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000465&flag=1
    [4] Kucera P A, Krajewski W F, Young C B. Radar beam occultation studies using GIS and DEM technology:An example study of Guam. J Atmos Oceanic Technol, 2004, 21:995-1006. doi:  10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2
    [5] Martz W, Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 1992, 18(6):747-761. https://www.researchgate.net/publication/222786989_Numerical_Definition_of_Drainage_Networks_and_Subcatchment_Areas_from_Digital_Elevation_Models
    [6] Garbrecht J, Campbell J. TOPAZ:An Automated Digital Landscape Analysis Tool for Topographic Evaluation, Drainage Identification, Watershed Segmentation and Subcatchment Parameterization. TOPAZ User Manual, USDA-ARS, Oklahoma, 1997:1-138.
    [7] Viessman W, Lewis G L. Introduction to Hydrology (4th ed). Harper-Collins, 1996:1-760.
    [8] Sun X, Mein R G, Keenan T D, et al. Flood estimation using radar and raingauge data. J Hydrology, 2000, 239:4-18. doi:  10.1016/S0022-1694(00)00350-4
    [9] 刘晓阳, 毛节泰, 李纪人, 等.雷达联合雨量计估测降水模拟水库入库流量.水利学报, 2002, (4):342-349. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200204009.htm
    [10] Ren liliang, Li Chunhong, Wang Meirong. Application of radar-measured rain data in hydrological processes modeling during the intensified observation period of HUBEX. Adv Atmos Sci, 2003, 20(2):205-211. doi:  10.1007/s00376-003-0005-8
    [11] Liu Xiaoyang, Mao Jietai, Zhu Yuanjing, et al. Runoff simulation using radar and rain gauge data. Adv Atmos Sci, 2003, 20 (2):213-218. doi:  10.1007/s00376-003-0006-7
    [12] Fulton R A, Breidenbach J P, Seo D, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13:377-395. doi:  10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
    [13] 尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-219. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050226&flag=1
    [14] 史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16 (6):737-745. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050696&flag=1
    [15] 吴翠红, 万玉发, 吴涛, 等.雷达回波垂直廓线及其生成方法.应用气象学报, 2006, 17(2):232-239. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060239&flag=1
    [16] 曹俊武, 刘黎平, 陈晓辉, 等.3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究.应用气象学报, 2006, 17(2):192-200. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060233&flag=1
    [17] Wilson J W, Brandes E A. Radar measurement of rainfall— a summary. Bull Amer Meteor Soc, 1979, 60:1048-1058. doi:  10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
    [18] Colle B, Westrick K, Mass C F. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea Forecasting, 1999, 14:137-154. doi:  10.1175/1520-0434(1999)014<0137:EOMAEP>2.0.CO;2
    [19] Beven K J, Kirkby M J. A Physically based variable contributing area model of basin hydrology. Hydrology Sci Bull, 1979, 24: 43-69. doi:  10.1080/02626667909491834
    [20] Beven K J, Kirkby M J, Schoffield N, et al. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. J Hydrology, 1984, 69:119-143. doi:  10.1016/0022-1694(84)90159-8
    [21] Beven K J, Lamb R, Quinn P, et al. TOPMODEL ∥VP Singh, Computer Models of Watershed Hydrology, Chapter 18. Water Resources Publications, 1995:627-668.
    [22] Saulnier G M, Beven K J, Obled C H. Including spatially variable soil depths in TOPMODEL. J Hydrology, 1998, 202: 158-172. https://www.researchgate.net/publication/223514856_Including_spatially_variable_soil_depths_in_TOPMODEL
    [23] 郭方, 刘新仁, 任立良.以地形为基础的流域水文模型———Topmodel及其拓宽应用.水科学进展, 2000, 11(3):296-301. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200003011.htm
    [24] 熊立华, 郭生练, 胡彩虹.TOPMODEL在流域径流模拟中的应用研究.水文, 2002, 22(5):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200205001.htm
    [25] 陈仁升, 康尔泗, 杨建平, 等.TOPMODEL模型在黑河干流出山径流模拟中的应用.中国沙漠, 2003, 23(4):428-433. http://www.cnki.com.cn/Article/CJFDTotal-ZGSS200304015.htm
    [26] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models, Ⅰ:A discussion of principles. J Hydrol, 1970, 10: 282-290. doi:  10.1016/0022-1694(70)90255-6
  • 加载中
图(6) / 表(5)
计量
  • 摘要浏览量:  3799
  • HTML全文浏览量:  857
  • PDF下载量:  1237
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-22
  • 修回日期:  2007-01-06
  • 刊出日期:  2007-06-30

目录

    /

    返回文章
    返回