六种近地层湍流动量输送系数计算方案对比分析
The Comparison of Six Methods to Calculate Turbulent Momentum Transfer Coefficient of Near-surface Layer
-
摘要: 选取30多年来近地层湍流通量研究中具有代表性的六种参数化方案, 应用GAME/Tibet试验中那曲通量观测站的实测资料, 对比分析了各方案计算所得的湍流动量输送系数 (CM) 之间的差异。结果表明:六种参数化方案计算得到的湍流动量输送系数之间存在较大差异。对于那曲观测站稀疏短草下垫面而言, 稳定条件下当理查孙数小于0.1时, 除Businger71方案存在显著低估以外, 其他各方案均能较好估算湍流动量输送系数; 不稳定条件下, Dyer74方案对湍流动量输送系数的估算效果最好, 其次为Wang02, Launiainen95和Louis82方案, Businger71方案误差较大。Abstract: The momentum bulk transfer coefficient (CM) is calculated by using six typical parameterization schemes and verified by the data of Naqu flux observation station of GAME (Global Energy and Water Cycle Experiment, Asian Monsoon Experiment)/Tibet Plateau Experiment. The results show obvious difference exists between results of the six schemes and the degree of difference is decided by the type of undersurface and the near surface stability. Wherein, schemes of Businger 71, Dyer 74 and B & H91 must calculate the turbulent flux transfer coefficient by iteration and waste CPU time for numerical simulation. For flux data of Naqu observation station which is covered by sparse grass is considered, when the Richardson number is less than 0.1, all the other five schemes can do better estimation on the CM except the scheme of Businger in 1971 which has an obvious underestimation. Under unstable conditions, the scheme of Dyer in 1974 has the best estimation on the momentum bulk transfer coefficient (CM), the schemes of Wang et al. in 2002, Launiainen in 1995 and Louis et al. in 1982 can also be used with gradually increasing error, and the scheme of Businger in 1971 has serious underestimation.
-
图 2 利用那曲站观测资料, 应用六种参数化方案计算得到的湍流动量输送系数CM与观测得到的CMobs之间的1:1比例图
(*表示稳定条件, ●表示不稳定条件)
Fig. 2 The plot of the turbulent momentum flux transfer coefficient calculated by six parameterization schemes versus transfer coefficient determined by observation directly
("*" means stable condition and "●" means unstable condition)
表 1 六种方案分别应用那曲观测资料计算得到的CM相对CMobs的归一化标准差 (EN)
Table 1 The normalized standard error of the estimation (EN) compared the CM calculated by six schemes to the CMobs determined by direct measurements
表 2 六种方案特性以及计算效果对比
Table 2 Contrast of the six parameterization schemes on characters and evaluation
-
[1] Gao Z, Bian L G, Zhou X J. Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. J Geophys Res, 2003, 108(D13):4387-4399. http://cat.inist.fr/?aModele=afficheN&cpsidt=15042473 [2] 丁一汇.地表通量的计算问题.应用气象学报, 1997, 8(1):29-35. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.004.htm [3] European Centre for Medium-range Weather Forecasts. Proceedings of ECMWF Workshop on Parameterization of Fluxes over Land Surfaces.European Centre for Medium-range Weather Forecasts, Reading, England, 1988:1-392. [4] Garratt J R, Pielke R A. On the sensitivity of mesoscale models to surface-layer parameterization constants. Boundary-Layer Meteorol, 1989, 48:377-387. doi: 10.1007/BF00123060 [5] Monin A S, Obukhov A M. Basic regularity in turbulent mixing in surface layer of the atmosphere. Akad Nauk SSSR Geofiz Inst, 1954, 24:163-187. [6] Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in the atmospheric surface layer. J Atmos Sci, 1971, 28:181-189. doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 [7] Dyer A J. A review of flux-profile relationships. Boundary-Layer Meteorol, 1974, 7:363-372. doi: 10.1007/BF00240838 [8] Louis J F.A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol, 1979, 17:187-202. doi: 10.1007/BF00117978 [9] Louis J F, Tiedtke M, Geleyn J F.A Short History of the Operational PBL-parameterization at ECMWF.Workshop on Planetary Boundary Layer Parameterization, Shinfield Park, Reading, Berkshire, UK, European Centre for Medium Range Weather Forecasts, 1982:59-79. http://citeseerx.ist.psu.edu/showciting?cid=2325009 [10] Wang S P, Wang Q, Doyle J.Some Improvements to Louis Surface Parameterization.Paper Presented at 15th Symposium on Boundary Layers and Turbulence, Am Meteor Soc, Wageningen, Netherlands, 2002. [11] Miller M J, Beljaars A C M, Palmer T N.The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical ocean. J Climate, 1992, 5:418-434. doi: 10.1175/1520-0442(1992)005<0418:TSOTEM>2.0.CO;2 [12] Holtslag A A M, De Bruin H A R.Applied modeling of the nighttime surface engery balance over land.J App Meteorol, 1988, 27:689-704. doi: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2 [13] Beljaars A C M, Holtslag A A M.Flux parameterization over land surfaces for atmospheric models. J App Meteorol, 1991, 30:327-341. doi: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2 [14] Launiainen J.Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Boundary-Layer Meteorol, 1995, 76:165-179. doi: 10.1007/BF00710895 [15] Gao Z, Chae N, Kim J, et al.Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J Geophys Res, 2004, 109, D06102, dio:10.1029/2003JD004089. doi: 10.1029/2003JD004089 [16] Yang K, Koike T, Yang D. Surface flux parameterization in the Tibetan Plateau.Boundary-Layer Meteorol, 2003, 116:245-262. doi: 10.1023/A%3A1021152407334?no-access=true