与水平风切变强度不均匀相联系的CISK惯性重力波
CISK Inertia-gravitational Wave Related to Horizontal Wind Shear Intensity Nonhomogeneous
-
摘要: 在虚拟高度坐标系中, 用一个简单的线性模式初步研究了水平风切变强度不均匀分布对长江流域梅雨锋附近贯穿整个对流层的深厚惯性重力波发生发展的影响。结果表明:水平风切变强度不均匀对CISK惯性重力波不稳定有重要作用。在一般干的层结大气中, 实际可能出现再强的水平风切变的影响也难以使惯性重力波变得不稳定; 只有在积云对流潜热参与, 原为弱稳定条件下, 水平风切变强度不均匀能促使低空急流北侧不稳定扰动的发生发展。而水平风切变强度不均匀对不稳定贡献最大的区域是梅雨锋南侧的急流轴附近。
-
关键词:
- CISK惯性重力波;
- 水平风切变强度不均匀;
- 梅雨锋;
- 中尺度对流系统
Abstract: In the Meiyu season most of the severe MCSs (mesoscale convective systems) with torrential rain may form, develop, move and regenerate down-stream along such Meiyu front in the Yangtze River basin. The kind of wave disturbance most relevant to these activities of MCSs is not only likely the deep mesoscale inertia-gravitational waves in company with the macroscopic cumulus cloud ensemble heating (inertia-gravitational wave CISK briefly), but also that relates to horizontal wind shear and wind shear intensity nonhomogeneous. The so called Meiyu front in Yangtze River basin is actually an equivalent barotropic zone wherein the horizontal thermal gradient is negligibly weak and rather the humidity gradient is very strong particularly in the lower troposphere. A three-dimensional linear model in a dimensionless pseudo-height (Z ≡-ln (p/p0)) coordinates with a simple parameterized cumulus heating expression is most suitable to be applied to discuss the deep mesoscale disturbances analytically in Yangtze River basin. The behaviors and the weather influences of the CISK inertia-gravitational wave relating to horizontal wind shear instability near Meiyu front on the MCSs activities over Yangtze River basin are investigated. The results show that the horizontal wind shear and horizontal wind shear intensity nonhomogeneous characters have the important influences on the instability of CISK inertia-gravitational wave. In the dry stratified atmosphere without cumulus heating, practically in almost all cases, the effect of horizontal wind shear and its horizontal nonhomogeneous characters can not make the inertia-gravitational waves instable. And only in the nearly CISK situation and the weak stability condition, the horizontal wind shear and its horizontal nonhomogeneous characters have a positive contribution to the instability of the wave disturbances. Such additional instability is mainly attributing to the second order derivative of basic flow in meridional direction. So the most favorable instable location is near the low-level jet stream on the south of the Meiyu front where the MCSs are likely most active. It does not mean that the instability and dispersion of the inertia-gravitational wave-CISK are the only mechanism of the genesis of the MCSs. Other mechanisms, including the dry inertial-gravitational wave in some stable-stratification atmospheric layer, may also lead to the MCSs development. -
图 3 U0=10 m·s-1, Nc2=-30 m2·s -2与水平风切变耦合的CISK惯性重力波动y方向不稳定临界点随高度的变化
Fig. 3 Same as in Fig. 2, but for Nc2=-30 m2·s-2
图 4 U0=15 m·s-1, Nc2=-50 m2·s-2与水平风切变耦合的CISK惯性重力波y方向不稳定临界点随高度的变化
Fig. 4 Same as in Fig. 2, but for U0=15 m·s-1
图 6 y=90°急流轴上不同条件下波幅指数增长率的变化
(虚线为U0=10 m·s -1, Nc2=-50 m2·s -2波指数增长率变化; 实线为U0=15 m·s -1, Nc2=-50 m2·s-2波指数增长率变化; 点线为U0=10 m·s -1, Nc2=-70 m2·s -2波指数增长率变化)
Fig. 6 The variation of the wave amplitude increasing power in different condiction for y=90°
(dashed line is for U0=10 m·s -1, Nc2=-50 m2·s -2; solid line is for U0=15 m·s-1, Nc2=-50 m2·s-2; dotted line is for U0=10 m·s -1, Nc2=-70 m2·s-2)
-
[1] Rayleigh L. On the stability, or instability, of certain fluid motions. Proc Lon Math Soc, 1880, 11:57-70. https://www.researchgate.net/publication/31008586_On_the_Stability_or_Instability_of_certain_Fluid_Motions [2] Lorenz E N. Barotropic instability of Rossby wave motion. J Atmos Sci, 1972, 29:258-264. doi: 10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2 [3] Hoskins B L. Stability of Rossby-Hacuitz wave. Quart J R Met Soc, 1973, 99:723-745. doi: 10.1002/(ISSN)1477-870X [4] Kuo H L. Dynamic instability of two-dimentional non-divergent flow in a barotropic atmosphere. J Meteor, 1949, 6:105-122. doi: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2 [5] Fjortoft R. Application of integal theorems in deriving criteria of satbility for laminar flows and for baroclinic circular vortex. Geophys Publ, 1950, 17:1-52. https://www.researchgate.net/publication/235994193_Application_of_Integral_Theorems_in_Deriving_Criteria_of_Stability_for_Laminar_Flows_and_for_the_Baroclinic_Circular_Vortex [6] 陆维松.强迫和耗散作用下大气运动的非线性正压不稳定.热带气象, 1989, 5(2):116-126. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX198902002.htm [7] 陆维松.纬向基流的非线性正压不稳定.气象科学, 1989, 9 (1):16-26. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198901001.htm [8] 陆维松.一个正压和斜压不稳定的充要条件.南京气象学院学报, 1994, 17(2):135-140. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX402.000.htm [9] 杨大升, 刘余滨, 刘式适.动力气象学.北京:气象出版社, 1983:275-278. [10] Gao Shouting. The instability of the vortex sheet along the horizontal shear line. Adv Atm Sci, 2001, 17:525-537. doi: 10.1007/s00376-000-0016-7?no-access=true [11] 高守亭, 周玉淑.水平切变上涡层不稳定理论.气象学报, 2001, 59(4):393-403. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200104001.htm [12] 吴洪, 林锦瑞.水平切变基流中惯性重力波的发展.新疆气象, 1995, 19(4):8-10. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX199604001.htm [13] 许小峰, 孙照渤.非地转激发的重力惯性波对梅雨锋暴雨影响的动力学研究.气象学报, 2003, 61(6):655-665. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200306001.htm [14] 常越, 丁治英, 杨帅, 等.梅雨暴雨期重力惯性波的发展与雨带的活动.应用气象学报, 2006, 17(3):296-302. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060353&flag=1 [15] 胡伯威.梅雨锋上MCS的发展、传播以及与低层"湿度锋"相关联的"CISK"惯性重力波.大气科学, 2005, 29(6):845-853. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506000.htm