热带对流季内振荡强度异常特征及其与海表温度的关系
Characteristics of Tropical Convection Intraseasonal Oscillation Anomaly and Their Relationship with Sea Surface Temperature
-
摘要: 利用外逸长波辐射 (outgoing longwave radiation, OLR) 资料分析了热带对流季内振荡 (ISO) 强度的季节变化及年际异常特征, 重点研究其与海表温度的关系。结果表明:最强的OLR季内振荡主要位于高海表温度 (SST) 区, 即热带印度洋和热带西太平洋区域, 终年存在, 冬、春季最强, 振荡中心偏于夏半球。OLR季内振荡强度年际异常显著区域是热带中东太平洋区域、西北太平洋区域和西南太平洋区域, 它与SST年际异常存在局地正相关关系, 伴随环流的辐合辐散, 并与ENSO事件关系密切。另外, El Niño事件发生之前, 热带印度洋和热带西太平区域OLR季内振荡增强, 其中心随事件的发展逐渐东移, 事件发生后这两个区域ISO减弱, 这与OLR季内振荡强度年际异常显著的区域具有内在连贯性。海表温度是决定OLR季内振荡强度季节变化、年际异常的一个关键因子。Abstract: The seasonal and interannual variability of intraseasonal oscillation (ISO) intensity of tropical convection is investigated by using NCAR/NOAA outgoing longwave radiation (OLR) data, along with the relationship with sea surface temperature (SST). It shows that there are two strongest ISO areas, namely, tropical Indian Ocean and tropical western Pacific Ocean, companied with large SST zonal deviation in climatological fields for any seasons. There are three noticeable areas of interannual anomaly of OLR ISO intensity, i.e., tropical middle and eastern Pacific (TMEP), tropical northwest Pacific (TNP) and tropical southwest Pacific (TSP). In these areas, there are noticeably positive correlation relationships between anomalies of OLR ISO intensity and SST interannually, along with the circulation anomaly convergence (divergence) in the low (high) level at the same time, which is also closely related to El Niño (La Nina) events according to the time coefficient series. In addition, the ISO enhances and moves eastward gradually before El Niño event takes place, and weakens later in the tropical Indian Ocean and tropical west Pacific, which links up with the areas of OLR ISO interannual anomaly intrinsically, because OLR ISO weakens in TNP and TSP and enhances in TMEP after the El Niño event occurs. In the climatological fields, OLR ISO is weak in TMEP, TNP and TSP, whereas the SST interannual anomaly is notable in these areas. It shows that SST interannual anomaly is very important for that of OLR intensity and an even crucial factor. It is well known that ENSO is the strongest interannul signal of SST, which is most notable in the winter and spring, so it is easy to understand that there is a close relationship between the above local relations of ISO intensity and SST interannual anomaly with ENSO. SST interannual anomaly is too weak to produce the marked ISO anomaly in the western Pacific, so there is weak relation between ISO intensity and SST interannual anomaly. Comparing the seasonal with interannual variation of OLR intensity, it is found that SST is a key factor to determine the seasonal and interannual variations of OLR intraseasonal oscillation intensity.
-
图 5 冬季SVD第一奇异向量(实线为
′OLR×10-2,虚线为T′ss,V′d;●对应El Niño年,○对应La Niña年) (a)′OLR~T′ss,(b)E′OLR~V′d200,(c)E′OLR~V′d850
Fig. 5 SVD first time coefficients in the boreal winter (solid line:
'OLR×10-2; dashed line:T′ss, V′d; ● for El Niño events; ○ for La Niña events) (a) ′OLR~T′ss, (b) ′OLR~V′d200, (c) ′OLR~V′d850
表 1 SVD第一模态的ρ1(单位:%)、相关系数r1
Table 1 ρ1 of the SVD first mode (unit:%) and correlation coefficient r1
-
[1] Madden R A, Julian P R. Detection of a 40—50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci, 1971, 28 (5):702-708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 [2] Madden R A, Julian P R. Discription of global-scale circulation cells in the tropics with a 40—50 day period. J Atmos Sci, 1972, 29(6):1109-112. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 [3] 周兵, 文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征.应用气象学报, 2007, 18(2):129-136. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070225&flag=1 [4] Krishnamurti T N, Subrahmanyam M, Osterhof D K, et al. Predictability of low frequency modes. Meteor Atmos Phys, 1990, 44(1):63-83. https://www.researchgate.net/publication/226879143_Predictability_of_low_frequency_modes [5] 孙颖, 丁一汇.1997年东亚夏季风异常活动在汛期降水中的作用.应用气象学报, 2002, 13(3):277-287. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020338&flag=1 [6] 李崇银.热带大气季节内振荡的几个基本问题.热带气象学报, 1995, 11(3):276-287. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199503010.htm [7] Madden R A, Julian P R. Observations of the 40-50-day tropical oscillation—a review. Mon Wea Rev, 1994, 122(7):814-837. https://www.researchgate.net/publication/234038706_Observations_of_the_40-50-Day_Tropical_Oscillation-A_Review [8] 李崇银.大气季节内振荡研究的新进展.自然科学进展, 2004, 14:734-741. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200407004.htm [9] Zhang Chidong. Madden-Julian Oscillation. Reviews of Geophysics, 2005, 43:RG2003.10.1029/2004RG000158. doi: 10.1029/2004RG000158/full [10] Lau K M, Waliser D E. Intraseasonal Variability in the Atmosphere-ocean Climate System. Praxis, Chichester, UK, 2005: 436. [11] Wang B. Theory in Intraseasonal Variability in the Atmosphereocean Climate System. Praxis, Chichester, UK, 2005:307-360. [12] 陈隆勋, 谢安, Murakami T.向外长波辐射资料揭示的El Niño和30—60天振荡的关系∥气象科技文集.北京:气象出版社, 1987:26-35. [13] Kousky V E, Kayano M T. Principal modes of outgoing longwave radiation and 250 mb circulation for the South American sector. J Climate, 1994, 7:1131-1141. doi: 10.1175/1520-0442(1994)007<1131:PMOOLR>2.0.CO;2 [14] 李崇银, 周亚萍.热带大气季节内振荡和El Niño的关系.地球物理学报, 1994, 37(1):17-26. http://www.cnki.com.cn/Article/CJFDTotal-DQWX401.002.htm [15] 李崇银, 廖青海.热带大气季节内振荡激发El Niño的机制.热带气象学报, 1998, 14(2):97-105. http://www.cnki.com.cn/Article/CJFDTotal-RDQX802.000.htm [16] 龙振夏, 李崇银.热带低层大气30—60天低频动能的年际变化与ENSO循环.大气科学, 2001, 6(6):798-808. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200106006.htm [17] McPhaden M J. Equatorial waves and the 1997-98 El Niño. Geophys Res Lett, 1999, 26:2961-2964. doi: 10.1029/1999GL004901 [18] Slingo J M, Rowell D P, Sperber K R, et al. On the predictability of the interannual behavior of the Madden-Julian oscillation andits relationship with El Niño. Quart J Roy Meteor Soc, 1999, 125:583-610. https://www.researchgate.net/publication/227837319_On_the_predictability_of_the_interannual_behaviour_of_the_Madden-_Julian_Oscillation_and_its_relationship_with_El_Nino [19] Hendon H H, Zhang C, Glick J D. Interannual variation of the Madden-Julian oscillation during austral summer. J Climate, 1999, 12:2538-2550. doi: 10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2 [20] Anyambra E K, Weare B C. Temporal variability of the 40—50 oscillation in the tropical convection. Int J Climatol, 1995, 15: 379-402. doi: 10.1002/(ISSN)1097-0088 [21] Bergman J W, Hendon H H, Weickmann K M. Intraseasonal air-sea interaction at the onset of El Niño. J Climate, 2001, 14 (8):1702-1719. doi: 10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2 [22] 王盘兴, 刘家铭, 沈素红.IAP GCM模式大气波普结构及其在厄尔尼诺年的异常.南京气象学院学报, 1992, 15(1):22-30. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199201003.htm [23] Slingo J M, Sperber K R, Boyle J S, et al. Intraseasonal oscillations in 15 atmospheric general circulation models:Results from an AMIP diagnostics subproject. Clim Dyn, 1996, 12(5):325-375. doi: 10.1007/BF00231106 [24] Kessler W S, Kleeman R. Rectification of Madden-Julian oscillation into the ENSO cycle. J Climate, 2000, 13(20):3560-3575. doi: 10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2 [25] Moore A M, Kleeman R. Stochastic forcing of ENSO by the intraseasonal oscillation. J Climate, 1999, 12:1199-1220. doi: 10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2 [26] Syu H H, Neelin J D. ENSO in a hybrid coupled model.Part Ⅱ:Prediction with piggyback data assimilation. Climate Dyn, 2000, 16:35-48. doi: 10.1007/s003820050003 [27] Zebiak S E. On the 30—60 day oscillation and the prediction of El Niño. J Climate, 1989, 15:1381-1387. https://www.researchgate.net/publication/249610698_On_the_30-60_Day_Oscillation_and_the_Prediction_of_El_Nino [28] Duchon C E. Lanczos filtering in one and two dimensions. J Appl Meteor, 1979, 18:1016-1021. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 [29] Lau K M, Chen P H. Aspects of the 40—50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Wea Rev, 1986, 114:1354-1367. doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2 [30] Knutson T R, Weickmann K M. 30—60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon Wea Rev, 1987, 115:1407-1435. doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2 [31] 智协飞, 何金海.北半球中高纬度大气低频变化的若干基本特征.南京气象学院学报, 1996, 19(1):76-81. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199601011.htm [32] Zhang Y, Wallace J M, Battisti D S. ENSO-like interdecadal variability:1900-93. J Climate, 1997, 10:1004-1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 [33] 陈兴跃, 王会军, 曾庆存.大气季节内振荡及其年际变化.北京:气象出版社, 2000:15. [34] 丁一汇.天气动力学中的诊断分析方法.北京:科学出版社, 1987. [35] Weickmann K M. Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon Wea Rev, 1983, 111:1838-1858. https://www.researchgate.net/publication/253446453_Intraseasonal_Circulation_and_Outgoing_Longwave_Radiation_Modes_During_Northern_Hemisphere_Winter [36] Knutson T R, Weickmann K M, Kutzbach J E. Global-scale intraseasonal oscillation of outgoing longwave radiation and 250 mb zonal wind during northern hemisphere summer. Mon Wea Rev, 1986, 14:605-623. https://www.researchgate.net/publication/249620168_Global-Scale_Intraseasonal_Oscillations_of_Outgoing_Longwave_Radiation_and_250_mb_Zonal_Wind_during_Northern_Hemisphere_Summer [37] Salby M L, Hendon H H. Intraseasonal behavior of clouds, temperature and motion in the tropics. J Atmos Sci, 1994, 51:2207-2225. doi: 10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2 [38] 王盘兴, 周伟灿, 王欣, 等.气象向量场的奇异值分解方法及其应用.南京气象学院学报, 1997, 20(2):152-157. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.001.htm [39] 施能.气侯诊断研究中SVD显著性检验的方法.气象科技, 1996, 4:5-6. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ604.001.htm [40] Huang Ronghui, Sun Fengying. Impacts of the tropical western Pacific on the East Asian summer monsoon. J Meteor Soc Japan, 1992, 70:243-257. http://ci.nii.ac.jp/naid/40000634875 [41] 李晓燕, 翟盘茂.ENSO事件指数与指标研究.气象学报, 2000, 58:102-109. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200001009.htm