TUVR型紫外辐射表性能研究
The Performance of TUVR Ultraviolet Radiometer
-
摘要: 利用多台Eppley实验室的TUVR紫外辐射表, 设计并进行比对观测试验, 定量了解TUVR型辐射表测量误差来源及贡献, 了解该辐射表性能, 从而提出数据订正方法。试验结果表明:TUVR型辐射表测量误差来源于感应元件和散射片两部分; 感应元件的衰减率y与使用时间t (月) 呈线性关系。散射片的测量误差跟一个地区的污染状况有关。清洗后散射片透过率与原始水平的透过率仍能保持线性关系, 不影响其余弦订正能力。订正后的结果与标准测量值相关显著。Abstract: An ultraviolet radiometer (TUVR) by the Eppley Lab of the United States is among the most popular instruments used for its reasonable design. Although not being able to detect the overall ultraviolet radiation, irradiance at the frequency section between 385 nm and 400 nm could be measured. After some time since the instrument is first put into use at the institution affiliated with the authors, the irradiance readings are found to attenuate a little. Under normal circumstances, it has to be sent back to the manufacturer for calibration, which is unpractical and costly. Under existing regulations in this regard, the instrument is probably discarded. When spectrometers are not an option as they are inconvenient for field operation, two new instruments are then introduced as reference to determine the cause of errors and ways of correcting data received. For this purpose, experiments are designed and conducted to analyze quantitatively the error source and contribution of measurement of surface UV radiation using the ultraviolet radiometer. The result shows that the degradation of sensors and pollution in the teflon diffusing disk are the main error sources. The decreasing rate (y) of sensors decreases linearly with its exposure time (t) and the fitting curve in Guangzhou is y=0.66t. The measuring error from the diffusing disk is mainly related to air pollution. Although the transmission of cleaned disk will be changed, it has linear relation with that of the original diffusing disk, and the adherence to Lambert cosine law is not affected. The value corrected by factors is very close to that of standard radiometer, and the correlation coefficient approaches 1.0.
-
Key words:
- ultraviolet radiation;
- TUVR;
- measuring error;
- data correction
-
表 1 试验设计方案
Table 1 Experiment Scheme
-
[1] 王炳忠.紫外线知识讲座———紫外辐射定义及其分类.太阳能, 2003, (4):7-8. http://www.cnki.com.cn/Article/CJFDTOTAL-TYNZ200304002.htm [2] 吴兑.到达地面的紫外辐射强度预报.气象, 2000, 26(12): 38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200012009.htm [3] 吴兑.到达地面的紫外辐射强度观测.气象, 2001, 27(3):26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200103006.htm [4] 沈元芳, 况石.紫外线模式预报方法的研究和试验.应用气象学报, 2002, 13(增刊):223-231. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1024.htm [5] WMO. Guide to Meteorological Instruments and Methods Observations (5th Edition). Geneva:WMO, 1995. [6] Yocum C S, Allen L H, Lemon E R. Photosynthesis under field condition, Ⅵ:Solar radiation balance and photosynthetic efficiency. Agronomy Journal, 1964, 56:249-253. doi: 10.2134/agronj1964.00021962005600030001x [7] 周允华.紫外辐射的气候学研究.太阳能学报, 1984, 1(5): 1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX198401000.htm [8] 吕达人, 李卫, 李福田, 等.长春地区紫外光谱 (UV-A, UV-B) 辐射观测和初步分析.大气科学, 1996, 20(3):343-351. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK603.009.htm [9] 白建辉, 王庚辰.北京地区太阳紫外辐射的基本特征.太阳能学报, 1993, 3(14):245-250. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX199303008.htm [10] 季国良, 陈有虞.青藏高原的紫外辐射.高原气象, 1985, 2(4):112-121. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX1985S2009.htm [11] 汤洁, 王炳忠.国产紫外总日射表性能测试 (Ⅱ):室外测试及国外同类产品比较.太阳能学报, 2005, 26(3):313-320. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200503004.htm [12] 王炳忠, 汤洁.用Lowtran 7进行分光辐射的计算研究 (Ⅰ)———不同波段分光总日射比例份额的计算研究.太阳能学报, 2002, 23(4):504-508. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200204021.htm [13] 王炳忠, 姚萍, 汤洁.用Lowtran 7进行分光辐射的计算研究 (Ⅱ)———UVB测量仪的校准方法及影响UVB的环境因子.太阳能学报, 2002, 23(5):610-614. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200205015.htm [14] Ångström A K, Drummond A J. Fundamental principles and methods for the calibration of radiometers for photometric use. Applied Optis, 1962, 1:455-464. doi: 10.1364/AO.1.000455 [15] 盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003:72-84.