2006年12月24—27日大范围大雾过程数值模拟
A Numerical Study on the Long-lasting Wide Spread Dense Fog Event During December 24—27, 2006
-
摘要: 利用美国国家大气研究中心(NCAR)和宾夕法尼亚州立大学(PSU)联合研制的第5代中尺度气象模式系统MM5对2006年12月24—27日江苏及其周边地区出现的一次罕见持续性大雾进行数值模拟和诊断分析, 同时对影响大雾过程的辐射条件进行敏感性试验。结果表明:形成持续性大雾的主要原因是大气层结稳定, 水汽充沛, 同时, 地面和大气的长波辐射冷却是雾形成和发展的最重要因素; 而日出后太阳短波辐射加热和热量湍流输送是辐射雾消散的主要原因。在大雾发展和维持期间, 雾区近地层基本上为弱的水汽辐合区; 在大雾减弱和消散期间, 雾区大部分为弱的水汽辐散区。大范围的下沉辐散运动有利于中低层大气增温, 与近地层的辐射降温相配合, 加上近地层弱冷平流作用, 使低层大气降温, 有助于逆温形成, 而深厚逆温层的存在, 对雾区的长时间维持起着决定性作用。Abstract: Fog presents a severe hazard in areas of intense traffic, such as airports and highways. Moreover, because air pollutants are not easy to be dispersed in foggy days, it is also harmful to human health and agricultural production. Fog prediction is essential to public safety and has a high economic value. To precisely predict foggy weather, it is essential to first understand the mechanisms responsible for fog formation and maintenance.The NCAR/PSU MM5 V37 is used to simulate and diagnose a dense fog event in Jiangsu Province and the surrounding areas during December 24—27, 2006. In the control simulation, the Gayno Seaman parameterization of the boundary layer is used. The deep convection parameterization of Grell is adopted, and the explicit treatment of warm rain is employed. To account for the important role that longwave and shortwane radiation play in fog formation, the cloud radiative scheme is employed. The center of the simulation area is set in Nanjing(32.03°N, 118.46°E). Two computational grids with horizontal grid distances of 30 and 10 km and domain sizes of 60×60 and 76×76 grid points are considered respectively in a two-way nesting method. High resolution in the boundary layer(another 9 levels joins below 200 m)is provided by thirty-two vertical levels, stretched monotonically from the surface to 100 hPa. Sensitivity experiments are performed to under stand the role of radiation. In the sensitivity tests, a series of simulations are performed with different radiative schemes, while keeping the others physic schemes fixed. The results show that longwave radiative cooling from the Earth's surface and the atmosphere are the most important factors for the formation and development of this fog event. Meanwhile, the steady atmospheric stratification and plenty moisture supply also play an important role. The fog dissipation is influenced mostly by the shortwave radiative heating and turbulent heat transfer after sunrise. During the development and maintenance stages of the fog, the surface layer is basically weak convergence region of water vapor, while in the weakening and dissipating period, the majority of the fog area is weak divergence region of water vapor. It indicates that the wide area of divergence descending accompanied with surface cooling and cold advection are the favorable conditions for the formation of a temperature inverse layer near the ground which is responsible for the maintenance of this prolonged fog event.
-
Key words:
- fog;
- liquid water content;
- radiation cooling
-
图 1 2006年12月24—27日10 m高处的液态水含量模拟结果(单位: g·kg-1)
(a)24日20:00,(b)25日01:00,(c)25日11:00,(d)25日22:00,(e)26日14:00,(f)27日14:00
Fig. 1 Liquid water content section of simulated(unit:g·kg-1)at 10 m
(a)20:00 Dec 24, 2006,(b)01:00 Dec 25, 2006,(c)11:00 Dec 25, 2006,(d)22:00 Dec 25, 2006,(e)14:00 Dec 26, 2006,(f)14:00 Dec 27, 2006
表 1 南京信息工程大学观测得到的能见度与数值模拟液水含量
Table 1 The visibility observed in NUIST and the liquid water content simulated
-
[1] Fisher E L, Caplan P.An experiment in the numerical prediction of fog and stratus. J Atmos Sci, 1963, 20: 425-437. doi: 10.1175/1520-0469(1963)020<0425:AEINPO>2.0.CO;2 [2] Roach W T, Brown R.The phusics of radiation fog:2-D study numerical.Quart J R Meteor Soc, 1976, 102:335-354. [3] Turton J D, Brown R. A comparison of a numerical study of radiation fog with detailed observation.J R Meteor Soc, 1987, 113: 37-54. doi: 10.1002/qj.49711347504 [4] Peter G Duynkerke.Radiation fog:A comparison of model simulation with detailed observation.Mon Wea Rev, 1991, 56:1-31. [5] Bott A.On the influence of the physics-chemical properties of Aerosols on the life cycle of Radiation fogs.Boundary Layer Meteorology, 1991, 56:1-31. doi: 10.1007/BF00119960 [6] 周斌斌.辐射雾的数值模拟.气象学报, 1987, 45(1): 21-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198701003.htm [7] 尹球, 许绍祖.辐射雾生消的数值研究Ⅰ—数值模式.气象学报, 1993, 51(3): 315-359. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199303010.htm [8] 尹球, 许绍祖.辐射雾生消的数值研究Ⅱ—生消机制.气象学报, 1994, 52(1): 60-66. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB401.007.htm [9] 钱敏伟.长江上空辐射雾的数值模拟.大气科学, 1990, 14(4): 483-489. [10] 张利民.重庆雾的二维非定常数值模拟.大气科学, 1993, 17(6): 750-758. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199306013.htm [11] Ballard S P, Golding B W, Smith R N B.Mesoscale model experimental forecast of the haar of northeast Scotland.Mon Wea Rev, 1991, 119: 2107-2123. doi: 10.1175/1520-0493(1991)119<2107:MMEFOT>2.0.CO;2 [12] 樊琦, 吴兑, 范绍佳, 等.广州地区冬季一次大雾的三维数值模拟研究.中山大学学报(自然科学版), 2003, 42(1):84-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200301021.htm [13] 傅刚, 王菁茜, 张美根, 等.一次黄海海雾事件的观测与数值模拟研究———以2004年4月11日为例.中国海洋大学学报, 2004, 34(5): 720-726. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200405005.htm [14] 石红艳, 王洪芳, 齐琳琳, 等.长江中下游地区一次辐射雾的数值模拟.解放军理工大学学报(自然科学版), 2005, 6(4): 404-408. http://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200504022.htm [15] 董剑希.雾的数值模拟研究及其综合观测.南京:南京信息工程大学, 2005. [16] Pagowski M, Gultept I, King P.Analysis and modeling of an extremely dense fog event in southern Ontario.J Appl Meteor, 2004, 43: 3-16. doi: 10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2 [17] 邹进上, 刘长盛, 刘文保.大气物理基础.北京:气象出版社, 1982. [18] Cotton W R, Anthes R A.风暴和云动力学.北京:气象出版社, 1993: 331-342. [19] Kunkel B A.Param eterization of droplet terminal velocity and extinction coefficient in fog models. J Appl Meteor, 1984, 23: 34-31. doi: 10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2 [20] Thierry B, Daniel G.Numerical forecasting of radiation fog.Part Ⅱ:Numerical model and sensitivity Tests.Mon Wea Rev, 1994, 122: 1218-1230. doi: 10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2 [21] 崔克强.边界层湍流通量参数化方案.应用气象学报, 1997, 8(增刊): 43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.006.htm [22] 何立富, 李峰, 李泽椿, 等.华北平原一次持续性大雾过程的动力和热力特征.应用气象学报, 2006, 17(2): 160-168. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060228&flag=1 [23] 朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 2000: 307-309. [24] 李子华, 黄建平, 周毓荃, 等.1996年南京连续5天浓雾的物理结构特征.气象学报, 1999, 57(5): 622-630. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905011.htm [25] 黄玉生, 许文荣, 李子华, 等.西双版纳地区冬季辐射雾的初步研究.气象学报, 1992, 50(1): 112-117. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199201012.htm [26] 刘小宁, 张洪政, 李庆祥, 等.我国大雾的气候特征及变化初步解释.应用气象学报, 2005, 16(2): 220-230. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050227&flag=1