基于GIS的贵州省冰雹分布与地形因子关系分析
Hail Distribution and Topographical Factors in Guizhou Province Based on GIS Technique
-
摘要: 使用贵州省1961—2004年84个气象台站44年历史冰雹记录及1:1000000全国数字高程模型(DEM)资料, 采用基于GIS的数字地形分析、分区统计和图像分类方法, 研究了冰雹分布与地形高程、坡向、坡度及地形切割深度的关系。研究表明:地形高程是影响贵州省降雹分布的最主要地形影响因子; 微观地形因子如坡向和坡度对降雹日数的变异并没有显著性影响, 但大范围的地势抬升及暖湿空气的迎风坡有利于降雹; 地形切割深度并不是年平均降雹日数差异的显著影响因子; 纬度位置的不同, 使其受暖湿空气影响程度不同, 热力条件也存在差异, 也是影响平均降雹日数差异的因子之一; 根据3个影响因子建模获得的方程及贵州省冰雹风险分区图, 经统计检验和与历史乡镇降雹资料比较, 具有较好的一致性。Abstract: Research on the relationship of topographical factors to distribution of hail, and getting an image of subdivisions for hail hazard which quantificationally concerns the difference of topographical factors are important to hailweather forecasting.Also, best services for decision-making to disaster prevention and reduction is provided.The relationship between distribution of hail and some topographical factors, such as elevation, slope grade, slope aspect and terrain incision depth, are studied by using GIS techniques, such as digital terrain analysis, zonal statistics and image classification with historical hail records of 84 meteorological stations over 44 years inGuizhou Province and the 1:1000000 resolution DEM data of China.It shows that natural logarithm of meanannual hail days conforms to normal distribution.The elevation is the major topographical factor which primarilyinfluence the distribution of hail, the annual mean hail days increase with the increase of elevation and it increases remarkably as the elevation increases to about 1000—1500 meters.Micro topographical factors, such as slopegrade and slope aspect, are not remarkable factors to the variance of annual mean hail days, but topography rising over large area and windward slope of warm moist air are favorable to hail. Terrain incision depth is not remarkable factor to the difference of annual mean hail days either.Different latitude is also one of the factorswhich influence the difference of annual mean hail days.The model for annual mean hail days derived from thethree remarkable factors and the map of hail hazard evaluation are reliable via statistical test and comparison tohistorical hail reports over countryside spots.The analysis is influenced due to the lack of hail reports in inner mountainous area in Guizhou and the incomplete collection of hail reports data.The relationship between different topographical factors should be further studied.
-
表 1 地形高程对Lhaildays的方差分析结果
Table 1 Analysis of variance for terrain elevation and Lhaildays
表 2 贵州省降雹风险区划可靠性检验
Table 2 Reliability test of the image of subdivisions for hail hazard in Guizhou
-
[1] 楼小凤, 胡志晋, 王广河.对流云降水过程中地形作用的数值模拟.应用气象学报, 2001, 12(增刊): 113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1014.htm [2] 徐国钧, 余隽勇, 谢光荣.复杂地形影响冰雹云发展的数值模拟实验.云南大学学报(自然科学版), 2000, 22(4): 274-279. http://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ200004007.htm [3] 许焕斌, 王思微.二维冰雹云数值模式.气象学报, 1988, 46(2): 227-235. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198802013.htm [4] 康凤琴, 张强, 马胜萍.青藏高原东北边缘冰雹形成机理.高原气象, 23(6): 751-757. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200406003.htm [5] 施望芝, 金琪, 郭施.湖北一次冰雹天气过程的落区诊断分析和预报.热带气象学报, 2004, 20(2): 212-217. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200402013.htm [6] 傅抱璞.地形和海拔高度对降水的影响.地理学报, 1992, 7: 303-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB199204001.htm [7] 罗培. GIS支持下的气象灾害风险评估模型.自然灾害学报, 2007, 16(1): 37-44. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200701007.htm [8] 张鸿发, 邓科, 王有才.断层与冰雹灾害的相关分析.高原气象, 1995, 14(2): 157-164. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX502.003.htm [9] 谢静芳, 王晓明.吉林省对流性天气的分布特征及地形影响机制.气象, 1994, 20(8):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199408008.htm [10] 刘引鸽.下垫面对冰雹的影响机理.宝鸡文理学院学报, 2000, 20(4):295-297. http://www.cnki.com.cn/Article/CJFDTOTAL-BJWX200004017.htm [11] 周启鸣, 刘学军.数字地形分析.北京:科学出版社, 2006. [12] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程.北京:科学出版社, 2006. [13] Dai F C, Lee C F. A spatiotemporal probabilistic modeling of storminduced shallow landsliding using aerial photographs and logistic regression.Earth Surface Processes and Landforms, 2003, 28: 527-545. doi: 10.1002/(ISSN)1096-9837 [14] Ohlmacher G C, Davis J C.Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas.Engineering Geology, 2003, 69: 331-343. doi: 10.1016/S0013-7952(03)00069-3 [15] Chung C F, Fabbri A G. Probabilistic prediction models for landslide hazard mapping.Photogrammetric Engineering and Remote Sensing, 1999, 65(12): 1389-1399. https://www.researchgate.net/publication/209802926_Probabilistic_prediction_models_for_landslide_hazard_mapping