留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球气候模式对东亚地区地表短波辐射的模拟检验

汪方 丁一汇

汪方, 丁一汇. 全球气候模式对东亚地区地表短波辐射的模拟检验. 应用气象学报, 2008, 19(6): 749-759..
引用本文: 汪方, 丁一汇. 全球气候模式对东亚地区地表短波辐射的模拟检验. 应用气象学报, 2008, 19(6): 749-759.
Wang Fang, Ding Yihui. Validation of simulation on surface shortwave radiation over East Asia by global climate models. J Appl Meteor Sci, 2008, 19(6): 749-759.
Citation: Wang Fang, Ding Yihui. Validation of simulation on surface shortwave radiation over East Asia by global climate models. J Appl Meteor Sci, 2008, 19(6): 749-759.

全球气候模式对东亚地区地表短波辐射的模拟检验

资助项目: 

科技部国际合作项目“区域气候变化的监测、模拟和影响研究” 2005DFA20940

Validation of Simulation on Surface Shortwave Radiation over East Asia by Global Climate Models

  • 摘要: 利用WCRPCMIP3提供的18个全球气候模式输出结果, 检验了其对东亚地区地表短波辐射的模拟能力, 结果表明:多模式集合的多年平均地表短波辐射模拟偏高约8.7 W/m 2, 晴空地表短波辐射模拟偏高约3.4 W/m 2, 地表短波云辐射强迫模拟偏低约5.3 W/m2, 模式间的标准差分别达到9.6, 7.8 W/m2和8 W/ m2; 多模式集合能够很好地模拟出地表短波辐射的纬向平均季节变化的位相特征, 但在量值上还有较大的差距; 模拟偏差分析表明, 多模式集合的区域年平均地表短波辐射、晴空地表短波辐射、地表短波云辐射强迫的均方根偏差分别为34.7, 17.1 W/m 2和29.1 W/ m2, 表明云在地表短波辐射的模拟偏差中起着重要作用; 多模式集合能够很好地模拟出地表入射短波辐射年变化的线性减小趋势, 但模式高估了晴空入射辐射的减小趋势, 而模拟的云辐射强迫变化趋势与ERA 40完全相反。
  • 图  1  多模式集合地表短波辐射、睛空地表短波辐射和地表短波云辐射强迫与ERA的差值

    (Ensemble-ERA40)(单位:W/m2, 阴影部分表示通过0.01的显著性检验)

    Fig. 1  Difference of surface shortwave radiation (SSR), clear-sky SSR, and surface shortwavw cloud radiative forcing (SSCRF) between multi-model ensemble and ERA40(Ensemble-ERA 40)

    (unit :W/m2, shaded areas denote passing the test of 0.01 level)

    图  2  多模式集合地表反照率 (单位:%) 和晴空地表入射短波辐射 (单位:W/m2) 与ERA的差值 (Model-ERA40)

    Fig. 2  Difference of surface albedo (unit :%) and clear-sky downscaling shortwave radiation (unit :W/m2) between multi-model ensemble and ERA 40(Ensemble-ERA40)

    图  3  不同模式模拟的区域平均地表短波辐射、晴空地表短波辐射和地表短波云辐射强迫相对ERA 40的差值 (M odel-ERA40)(单位:W/m2)

    Fig. 3  Regional average difference between simulation and ERA 40 for SSR, clear-sky SSR and SSCRF (Model-ERA40)(unit:W/m2)

    图  4  ERA 40和多模式集合模拟的地表短波辐射、晴空地表短波辐射和地表短波云辐射强迫的纬向平均季节变化 (等值线) 及其的差值 (Ensemble-E RA40, 阴影)(单位:W/m2)

    Fig. 4  Seasonal variation of zonally averaged SSR, clear-sky SSR and SSCRF for ERA 40 and multi-model ensemble (contour) and their difference (shaded, Ensemble-E RA40)(unit :W/m2)

    图  5  地表短波辐射、晴空地表短波辐射和地表短波云辐射强迫的多模式集合均方根偏差 (等值线) 和模式间差异标准差 (阴影)(单位:W/m2)

    Fig. 5  Multi-model ensemble of root mean square deviation (contour) and inter-model standard deviation (shaded) of SSR, clear-sky and SSCRF (unit :W/m2)

    图  6  区域平均均方根偏差和标准差的季节变化

    (a) 地表短波辐射, (b) 晴空地表短波辐射, (c) 地表短波云辐射强迫, (d) 地表短波云辐射强迫与晴空地表短波辐射的比值

    Fig. 6  Seasonal variation of regional average of root mean square deviation and standard deviation

    (a) SSR, (b) clear-sky SSR, (c) SSCRF, (d) ratio of SSCRF to clear-sky SSR

    图  7  地表入射短波辐射年际变化 (a) 地表入射短波辐射, (b) 晴空地表入射辐射, (c) 地表短波云辐射强迫, (d) 模式间标准差

    Fig. 7  Annual variation of surface downscaling shortwave radiation (a), clear-sky surface downscaling shortwave radiation (b), surface shortwave cloud radiative forcing (c) and inter-model standard deviation (d)

    表  1  多模式集合均方根偏差和模式间标准差之间的空间相关系数

    Table  1  Spandard coef ficients between multi-model ensemble of root mean square devlation and inter-model standard deviation

  • [1] Li Z, Moreau L, Arking A. On solar energy disposition. Bull Am Meteorol Soc, 1997, 78 : 53-70 doi:  10.1175/1520-0477(1997)078<0053:OSEDAP>2.0.CO;2
    [2] Wild M, Ohmura A, Gilgen H. The disposition of radiative energy in the global climate system: GCM versus observational estimates. Clim Dyn, 1998, 14:853-869 doi:  10.1007/s003820050260
    [3] Wild M. Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys Res Lett, 2005: 32, L07704, doi:10.1029/ 2005GL022421. 850
    [4] IPCC. Climate Change 2007: The Physical Science Basis// Solomon S, Qin D, Manning M, et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007
    [5] Arking A. Absorption of solar energy in the atmosphere:Discrepancy between model and observations. Science, 1996, 273:779-782 doi:  10.1126/science.273.5276.779
    [6] Wild M, Ohmura A, Gilgen H, et al. Validation of GCM simulated radiative fluxes using surface observations. J Clim, 1995, 8: 1309-1324 doi:  10.1175/1520-0442(1995)008<1309:VOGCMR>2.0.CO;2
    [7] Cusack S, Slingo A A, Edwards J M, et al. The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Q J R Meteorol Soc, 1998, 124: 2517-2526 https://www.researchgate.net/publication/248019720_The_radiative_impact_of_a_simple_aerosol_climatology_on_the_Hadley_Centre_atmospheric_GCM
    [8] Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: Decadal changes in solar radiation at the Earth's surface. Science, 2005, 308 : 847-850 doi:  10.1126/science.1103215
    [9] Che H Z, Shi G Y, Zhang X Y, et al. Analysis of 40 years of solar radiation data from China, 1961--2000. Geophys Res Lett, 2005, 32, L06803, doi: 10.1029/2004GL022322
    [10] Liang F, Xia X A. Long term trends in solar radiation and the associated climatic factors over China for 1961--2000. Annales Geophysicae, 2005, 2 : 2424-2432 http://www.oalib.com/paper/1369199
    [11] Yu R C, Yu Y Q, Zhang M H. Comparing cloud radiative properties between the Eastern China and the Indian monsoon region. Adv Atmos Sci, 2001, 18(6) : 1090-1102 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQJZ200106003.htm
    [12] Wang W C, Gong W, Kau W S, et al. Characteristics of cloud radiative forcing over east China. J Climate, 2004, 17 (4) : 845-853 doi:  10.1175/1520-0442(2004)017<0845:COCRFO>2.0.CO;2
    [13] Ramanathan V. The role of earth radiation budget studies in climate and general circulation research. J Atmos Sci, 1987, 37: 447-454 https://www.researchgate.net/publication/248791502_The_role_of_Earth_Radiation_Budget_studies_in_climate_and_general_circulation_research
    [14] 刘洪利, 朱文琴, 宜树华, 等.中国地区云的气候特征分析.气象学报, 2003, 61(4):466-473 http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304007.htm
    [15] 尹宏.大气辐射学基础.北京:气象出版社, 1993.
    [16] 张莉.全球海气耦合模式对东亚降水模拟的检验.北京:中国科学院研究生院, 2008
    [17] 汪方, 丁一汇, 徐影.辐射参数化方案对一个海气耦合模式云和辐射模拟的影响.应用气象学报, 2007, 18(3):257-265. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070346&flag=1
  • 加载中
图(7) / 表(1)
计量
  • 摘要浏览量:  3535
  • HTML全文浏览量:  711
  • PDF下载量:  1240
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-26
  • 修回日期:  2008-09-08
  • 刊出日期:  2008-12-31

目录

    /

    返回文章
    返回