MODIS巢湖水体叶绿素a浓度反演模型
MODIS in Monitoring the Chlorophyll-a Concentrations of Chaohu Lake
-
摘要: 对大面积水体进行水质遥感监测是比较典型的水体环境监测手段。该文利用地物光谱仪测定了巢湖水面的光谱反射率, 收集了相应时间的MODIS数据, 经过预处理之后, 首先分析了巢湖水面光谱特征, 并对实测水体反射率与实测叶绿素a之间的关系进行统计拟合计算。在经过MODIS大气校正后, 得到1~7通道的地表反射率。利用大气校正后的EOS/MODIS数据, 选择最佳通道组合, 定义了叶绿素a指数IChla, 建立了MODIS巢湖叶绿素a浓度的反演模型, 检验得到相关系数为0.5079。Abstract: Using remote sensing data for large area water quality survey is a typical water environment monitoring method. The Chaohu Lake reflectance spectra are measured using ASD field spectrometer and the MODIS data collected during the same period. After the MODIS data are preprocessed, the spectral characteristics of Chaohu Lake are analyzed and the spectral is compared with references. Then the relation between the measured water reflectance and chlorophyll a is fitted. The fitting formula is consistent with previous research results and the correction coefficient is 0.75. But after analyzing the apparent reflectance of the MODIS L1B and the measured concentration of the chlorophyll-a, the ideal inversion lake model can not be obtained because of the influence of the atmosphere and other factors. After a special atmospheric correction for MODIS data, the ground reflectance spectra are obtained in the channels 1—7. The relation between the ground reflectance and the chlorophyll a is fitted and the correction coefficient is improved. At last, the optimum bands combination are chosen after analyzing the relation between the reflectance spectra and the corresponding moment of the concentration of the chlorophyll a, using EOS/MODIS data after atmospheric correction. The chlorophyll a index IChla is defined. Therefore the inversion model for chlorophyll a concentration of Chaohu Lake is achieved, and the correction coefficient is 0.5079. This correction coefficient is not as good as the result(0.75)obtained by the hyperspectral data measured by the field spectrometer. There are 3 possibilities that may cause the errors. First, the bands selection of the MODIS data are not cover exactly the spectral sensitive of the concentration of the chlorophyll a(685—715 nm). Second, the narrowband of the field spectrometer and broadband of the MODIS data is not very exact. Third, the atmospheric correction errors above Chaohu Lake may be too big.
-
Key words:
- inversion;
- chlorophyll-a;
- MODIS data;
- Chaohu Lake
-
表 1 2003年1月10日巢湖水质参数
Table 1 The water quality parameters of Chaohu Lake on Jan 10, 2003
表 2 2003年1月10日MODIS前11个通道表观反射率
Table 2 The apparent reflectance of MODIS CH1—CH11 on Jan 10, 2003
表 3 MODIS通道光谱范围
Table 3 Band spectral range of MODIS
-
[1] 国家环境保护总局.2003年《中国环境状况公报》.http://www.cpirc.org.cn/tjsj/picture/hj2003.pdf.2004. [2] Lefelier R M, Abbott M R. An analysis of chlorophyll fluorescence algorithm for the moderate resolution imaging spectrometer(MODIS). Remote Sens Environ, 1996, 58:215-223. doi: 10.1016/S0034-4257(96)00073-9 [3] Anu Reinart, Don Pierson. Water Quality monitoring of Large European Lakes Using MERIS Full Resolution Data. Proc of the 2004 Envisat & ERS Symposium. Salzburg, Austria, 2004. [4] Martinez J M, Seyler F, Bourgoin L M, et al. Amazon Basin Water Quality Monitoring Using MERIS and MODIS Data. Proc of the 2004 Envisat & ERS Symposium. Salzburg, Austria, 2004. [5] 李素菊, 吴倩, 王学军, 等.巢湖浮游植物叶绿素含量与反射光谱特征的关系.湖泊科学, 2002, 14(3):228-234. http://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200203005.htm [6] 波谱测量规程.中华人民共和国国家军用标准.GJB4029-2000:1-21. [7] Mash Nishihama, Robert Wolfe, David Solomon, et al. MODIS Level 1A Earth Location: Algorithm Theoretical Basis Doeument Version 3.0. 1997. [8] Barbieri Richard, Montgomery Harry, Qiu Shiyue, et al. Draft of the MODIS Level 1B Algorithm. Theoretical Basis Document Version 2.0. 1997. [9] http://eospso, gsfc.nasa.gov/eos_homepage/for_scientists/index, php. NASA Goddard Space Flight Center. 1998. [10] Oron G, Gitelson A. Real-time quality monitoring by remote sensing of contaminated water-bodies: Waste stabilization pond effuent. Wat Res, 1996, 30(12):3106-3114. doi: 10.1016/S0043-1354(96)00203-5 [11] 赵英时.遥感应用分析原理与方法.北京:科学出版社, 2003. [12] Gitelson A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll Int Remote Sensing, 1993, 13(17):3367-3373. https://www.researchgate.net/publication/248976715_The_peak_near_700_nm_on_radiance_spectra_of_algae_and_water_relationships_of_its_magnitude_and_position_with_chlorophyll_concentration [13] Carder K L, Chen F R, Lee Zhongping, et al. MODIS Ocean Science Team Algorithm Theoretical Basis Document 19. Petersburg, Florida, 2003. [14] 吴敏, 王学军.应用MODIS遥感数据监测巢湖水质.湖泊科学, 2005, 17(2):110-113. http://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200502004.htm [15] Carder K L, Chen F R, eannizzaro J P, et al. Performance of the MODIS semi-analytical ocean cilor algorithm for the cholorophyll a. Advances in Space research, 2004, 33:1152-1159. doi: 10.1016/S0273-1177(03)00365-X [16] Darecki M, Stramski D. An evalution of MODIS and Sea WiFS bio-optical algorithma in the Baltic Sea. Remote Sens Environ, 2004, 89: 326-350. doi: 10.1016/j.rse.2003.10.012 [17] Ekstrand S. Landsat TM based quantification of ehlorophyll-a during algae blooms in coastal waters. Int J Remote Sensing, 1992, 13(10):1913-1926. doi: 10.1080/01431169208904240 [18] Yoram J. Kaufman and Didier Tanre Algorithm For Remote Sensing of Tropospheric Aerosol From Modis Algorithm Theoretical Basis Document(MOD04). Algorithm Theoretical Basis Document ATBD-MOD-02, NASA Goddard Space Flight Center, 1998. [19] 荀尚培, 吴文玉, 张宏群.基于统计的MODIS地表反射率简单估算方法.量子电子学报, 2006, 23(5):202-209. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU200605033.htm