统计预报海温场驱动的CAM3.1模式预报试验
Forecasting Experiments of CAM 3.1 Model Using Statistic Forecast SST Data
-
摘要: 基于动力气候模式进行月一季尺度预报的“两步法”思想,提出一种新的预报海温场统计模型,并以该统计模型预报的海温场驱动NCAR CAM3.1模式对1981-2000年月时间尺度的东亚500 hPa高度距平场进行客观回报试验;在此基础上,提出了对预报结果的订正方法。结果表明:统计预报海温模型的预报海温场能够反映出全球海温空间分布的基本特征,并对表征ENSO事件的Niño3.4区海温变化的预报能力较强。该统计模型预报的海温场驱动的CAM3.1模式可以较好地预报出东亚500 hPa环流的主要分布特征,试验表明:适当的统计订正方法可以在一定程度上提高CAM3.1模式对东亚夏季500 hPa环流背景的预报技巧。Abstract: Based on the "two-step method" in month/season forecast, a new statistic model is designed to predict the global SST field. The global SST during 1981-2000 are predicted using the model. Comparing with the NCEP SST field, the results indicate that the forecast global SST field from the statistic forecast SST model could reflect primary patterns of the global SST, and can predict the variability of SST anomaly in Niño3.4 which represents E1 Niño/La Niña event. The correlation coefficient between forecast SST and NCEP SST in Niño3.4 is 0.596. Furthermore, the numerical experiments based on the forecast global SST boundary conditions for forecasting the monthly anomalies of 500 hPa geopotential height over east-Asia (1981-2000) are performed using the NCAR CAM3.1 model. The first six eigenvectors which represent typical spatial patterns of CAM3.1 500 hPa and NCEP 500 hPa are decomposed from the CAM3.1 500 hPa and NCEP 500 hPa fields using EOF respectively. The results show that primary patterns of 500 hPa height anomalies in east Asia can be forecasted by driving CAM3.1 with the forecast global SST. However, the forecast ability of 500 hPa geopotential height over east Asia in summer is faulty and unstable in forecast experiments. A statistic revision method is provided to revise the forecast results of CAM3.1 model. The root mean square error and correlation coefficients of 500 hPa height anomalies between CAM3.1 forecast (revised before and after) and NCEP in summer over the east Asia are compared, the root mean square error between the two fields decreases every year, and the mean correlation coefficient during 1981-2000 increases. These results indicate that the forecasting skill of 500 hPa height anomalies over east Asia in summer is improved using the statistic revision method to a certain extent. The experiments show this statistical method can be used to improve the forecasting skill of the dynamic model CAM3.1.
-
表 1 4个预报因子与海温场第2特征向量时间系数的滞后相关
Table 1 The correlation coefficients in lag between the four forecast indexes and the second lime coefficients of the global SST
-
[1] 丁一汇,李清泉,李维京, 等.中国业务动力季节预报的进展.气象学报,2004,62(5):598-612. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200405007.htm [2] Palmer T N, Anderson D L T. The prospects for seasonal forecasting. J R Meteor Soc,1994,120:755-793. [3] Mason S J, Goddard L, Graham N E, et al. The IRI seasonal climate prediction system and the 1997/98 El Nino event. Bull Amer Meteor Soc,1999,80:1853-1873. doi: 10.1175/1520-0477(1999)080<1853:TISCPS>2.0.CO;2 [4] Ji M, Kumar A, Leetmaa A. A multiseason climate forecast system at the National Meteorological Center. Bull Amer Meteor Soc,1994,75:569-577. doi: 10.1175/1520-0477(1994)075<0569:AMCFSA>2.0.CO;2 [5] Derome J, Brunet G, Plante A, et al. Seasonal predictions based on two dynamical models. Atmsophere-Ocean,2001,39(4):485-501. doi: 10.1080/07055900.2001.9649690 [6] Wang G, Kleeman R, Smith N, et al. Seasonal Predictions with a Coupled Global Ocean-atmosphere Model. BMRC Research Report No.77,BurMet,Australia,2000. [7] 李维京,张培群,李清泉, 等.动力气候模式预测系统业务化及其应用.应用气象学报,2005,16(增刊):1-11. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=YYQX2005S1000&v=MDU1MDRSTDJmWk9ScUZ5emtXcjdCUERUYWRyRzRIdFN2cm85RlpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1U= [8] 高学杰,赵宗慈.北半球和中国气候的模拟及1996年汛期预测的试验及检验.应用气象学报,1997,8(增刊):145-153. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD9697&filename=YYQX7S1.018&v=MDg1NjZtZFl1ZHFGaUhuVVE9PVBEVGFkclRiSDgvTXJvY3FGNTRPZmdnNXpoQVU0amg0T1g2VHJIMDNlYk9UUmI= [9] 高学杰,赵宗慈.利用全球环流模式进行我国汛期短期气候预测的试验.应用气象学报,1999,10(4):463-469. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990495&flag=1 [10] 钱永甫,郑琼.P—σ全球模式的月尺度动力延伸预报试验.大气科学,2001,25(5):641-649. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2001&filename=DQXK200105005&v=MTQ2OTBScUZ5emtXN3pJSVR6VFpiRzRIdERNcW85RllZUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmWk8= [11] 董敏,李跃凤,沈文海.东亚气候的模拟与验证研究.气象学报,1997,55(6):692-702. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB706.004.htm [12] 王绍武.短期气候预测的可预报性与不确定性.地球科学进展,1998,13(1):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ801.002.htm [13] Arun Kumar, Bhaskar Jha, Zhang Qin, et al. A new methodology for estimating the unpredictable component of seasonal atmospheric variability. J Climate,2006,20:3888-3901. doi: 10.1175/JCLI4216.1 [14] Kingtse Mo, Eugenia Kalnay. Impact of sea surface temperature anomalies on the skill of monthly forecasts. Mon Wea Rev,1991,19:2771-2793. http://cat.inist.fr/?aModele=afficheN&cpsidt=5185717 [15] 骆美霞,张道民.实时海温对动力延伸 (月) 预报影响的数值试验研究.应用气象学报,2002,13(6):727-733. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2002&filename=YYQX200206011&v=Mjk0OTExVDNxVHJXTTFGckNVUkwyZlpPUnFGeXpsVTcvQlBEVGFkckc0SHRQTXFZOUVaWVI4ZVgxTHV4WVM3RGg= [16] 余建锐,董敏.CCM3模式1998年汛期预报.气候预测评论,1998,:80-81. [17] 余建锐,董敏.CCM3大气环流模式月—季尺度预报初步试验.应用气象学报,2001,12(1):54-60. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2001&filename=YYQX200101005&v=MDI4NDdTN0RoMVQzcVRyV00xRnJDVVJMMmZaT1JxRnl6bFVMN05QRFRhZHJHNEh0RE1ybzlGWVlSOGVYMUx1eFk= [18] 高学杰,林万涛,Fred Kucharsky, 等.实况海温强迫的CCM3模式对中国区域气候的模拟能力.大气科学,2004,28(1):78-90. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200401007.htm [19] James R McCaa, Mathew Rothstein, Brain E Eaton, et al. User's Guide to the NCAR Community Atmosphere Model (CAM 3.0). Climate and Global Dynamics Division National Center for Atmospheric Research Boulder,Colorado,USA.2004. [20] Gray B M. On the stability of temperature eigenvector pattern. J Climatology,1981,1:273-281. doi: 10.1002/joc.3370010306 [21] Rasmusson E M, Carpenter T H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Wea Rev,1982,110:354-384. doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2 [22] Chen W. The climate of spring 1983-A season with persistent global anomalies associated with El Niño. Mon Wea Rev,1983,111:2371-2384. doi: 10.1175/1520-0493(1983)111<2371:TCOSSW>2.0.CO;2 [23] Harrison D, Gutzler D. Variability of monthly-averaged surface and 850 mb winds at tropical pacific islands. Mon Wea Rev,1986,114:285-294. doi: 10.1175/1520-0493(1986)114<0285:VOMASA>2.0.CO;2 [24] Owen J, Palmer T. The impact of El Niño on an ensemble of extended-range forecasts. Mon Wea Rev,1987,115:2103-2117. doi: 10.1175/1520-0493(1987)115<2103:TIOENO>2.0.CO;2 [25] Halpert M S, Ropelewski C F. Surface temperature patterns associated with the Southern Oscillation. J Climate,1992,5:577-593. doi: 10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2 [26] Wang C. Atmospheric circulation cells associated with the El Niño-Southern Oscillation. J Climate,2002,15:399-419. doi: 10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2 [27] 王永光.2000年北半球大气环流特征及其对中国气候的影响.气象,2001,27(4):12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200104003.htm [28] 王东海,柳崇健,刘英, 等.2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析.气象学报,2008,66(3):405-422. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200803011.htm [29] 魏凤英.气候统计诊断与预测方法研究进展——纪念中国气象科学研究院成立50周年.应用气象学报,2006,17(6):736-742. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606122&flag=1