近57年我国气温格点数据集的建立和质量评估
Establishment and Assessment of the Grid Air Temperature Data Sets in China for the Past 57 Years
-
摘要: 在普通克里金插值方法的基础上, 引入高程因子并充分考虑插值的边界效应, 对1951:2007年我国气温站点资料进行空间结构分析和插值, 得到我国地面气温日、月、年平均值1°×1°格点数据集。数据集的质量评估结果表明:高程在我国区域气温空间结构分析和插值中起着重要作用, 高程资料的引入有效提高了大部分高山地区的插值效果; 相比站点资料, 所建立的格点数据集在描述我国年平均气温以及季节平均气温分布时更为合理, 突出了温度场的大尺度特征; 数据集反映出了我国年平均气温变化趋势主要的空间差异; 数据集较好地反映了我国年平均气温变化状况, 1951- 2007年气温变暖幅度约为1.6 ℃, 增温速率0.28 ℃/10 a, 比全球或半球同期平均增温速率明显偏高, 且气温增暖主要发生在最近的20余年之内。另外, 格点数据集显示, 1998—2007年是1951年以来最暖的10年, 其中2006年全国平均气温距平接近2000年之前的历史最高年份1998年, 而2007年全国平均气温距平值超过1998年, 达到1951年以来的历史最高值1.3 ℃, 为最暖的一年。Abstract: Temperature data from meteorological stations in China for the past 57 years are interpolated by introducing digital elevation model(DEM) and taking the edge effect of interpolations into consideration on the basis of the ordinary Kriging method. Using this method, the daily, monthly and annual mean data sets of the grid-based temperature in China with the resolution of 1°latitude by 1°longitude are obtained. The results of the grid data sets quality assessment show that DEM has an apparent effect on the spatial structure of temperatures and plays an important role on interpolations. Great improvements on the spatial interpolation in alpine spots are achieved after exploiting DEM. Compared with station data, grid data sets are more plausible to depict the annual and seasonal mean temperature distribution. The grid data sets can well simulate the spatial difference of the annual mean temperature trends in China. The grid data sets can also well demonstrate the change of annual mean temperature in China which as a whole rises by about 1.6 ℃ for 1951—2007, with a warming rate of about 0.28 ℃/10 a. The warming in the later half 20th century is more rapid than the average values of the world and the Northern Hemisphere. The most evident warming occurs in the past over 20 years. The grid data sets also indicate that: Period from 1998 to 2007 is a decade when the annual mean temperature is the highest since 1951, amongst which the annual mean temperature anomaly in 2006 is close to that in 1998 with the highest value before 2000, and the annual mean temperature anomaly in 2007 with a value of 1.3 ℃ beyond that in 1998, is the highest since 1951.
-
图 6 1961-2005年我国1月和7月平均气温趋势 (单位:℃/ 10 a)
(a)1月站点资料二维插值, (b)1月格点数据集, (c)7月站点资料二维插值, (d)7月格点数据集
Fig. 6 Trends in monthly mean temperature over China in January and July during 1961-2005 (unit:℃/ 10 a)
(a) station data in January, (b) grid data sets in January, (c) station data in July, (d) grid data sets in July
表 1 6种插值方法对近10年全国7月温度场的空间插值交叉验证结果
Table 1 The spatial interpolation effect of ordinary Kriging and five other methods over China in July during 1998-2007
-
[1] Jones P D, Raper R, Bradley R S, et al. Northern hemisphere surface air temperature variations:1851—1984. J Climate Appl Meteor, 1986, 25(2):161-179. https://www.researchgate.net/publication/249606277_Northern_Hemisphere_Surface_Air_Temperature_Variations_1851-1984 [2] Hanson J, Lebedeff S. Global surface air temperature:Update through 1987. Geophys Res Lett, 1988, 15(4):323-326. doi: 10.1029/GL015i004p00323 [3] Hulme M. A 1951—80 global land precipitation climatology for the evaluation of general circulation models. Climate Dyn, 1992, 7(1):57-72. https://www.researchgate.net/publication/226852690_A_1951-80_global_land_precipitation_climatology_for_the_evaluation_of_general_circulation_models [4] Jones P D. Hemispheric surface air temperature variations:A reanalysis and an update to 1993. J Climate, 1994, 7(11): 1794-1802. https://www.researchgate.net/publication/236401573_Hemispheric_Surface_Air_Temperature_Variations_A_Reanalysis_and_an_Update_to_1993 [5] Huffman G J, Adler R F, Rudolf B R, et al. The Global Precipitation Climatology Projecct (GPCP) combined precipitation dataset. Bull Amer Meteor Soc, 1997, 78(1):5-20. doi: 10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2 [6] Xie P, Arkin P A. Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Amer Meteor Soc, 1997, 78 (11):2539-2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 [7] Adler R F, Kidd C, Petty G, et al. Intercomparison of Global Precipitation Products:The Third Precipitation Intercomparison Project (PIP-3). Bull Amer Meteor Soc, 2001, 82 (7):1377-1396. doi: 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2 [8] IPCC.Climate Change 2001:The Science of Climate Change ∥Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 2001. [9] 林忠辉, 莫兴国, 李宏轩, 等.中国陆地区域气象要素的空间插值.地理学报, 2002, 57(1):47-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200201005.htm [10] 冯锦明, 赵天保, 张英娟.基于台站降水资料对不同空间内插方法的比较.气候与环境研究, 2004, 9(2):261-277. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200402003.htm [11] 刘峰.应用Kriging算法实现气象资料空间内插.气象科技, 2004, 32(2):110-115. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200402009.htm [12] 苏志侠, 程麟生.两种客观分析方法的比较:逐步订正和最优内插.高原气象, 1994, 13(2):194-205. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX402.010.htm [13] 李新.青藏高原气温分布的空间插值方法比较.高原气象, 2003, 22(6):565-573. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200306006.htm [14] 封志明, 杨艳昭, 丁晓强, 等.气象要素空间插值方法优化.地理研究, 2004, 23(3):357-364. http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200403008.htm [15] 朱芮芮, 李兰, 王浩, 等.降水量的空间变异性和空间插值方法的比较研究.中国农村水利水电, 2004, 7:25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200407010.htm [16] 庄立伟, 王石立.东北地区逐日气温要素的空间插值方法应用研究.应用气象学报, 2003, 14(5):605-615. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030575&flag=1 [17] 魏凤英, 曹鸿兴.我国月降水和气温网格点资料的处理和分析.气象, 1994, 20(10):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX410.004.htm [18] Vose R S, Schmoyer R L, Steurer P M, et al. The Global Historical Climatology Network:Long-term Monthly Temperature, Precipitation, Sea-level Pressure, and Station Pressure Data. ORNL/CDIAC-53, NDP-041, 1992:325. http://cdiac.ornl.gov/epubs/ndp/ndp041/ndp041.html [19] Peterson T C, Vose R S. An overview of the global historical climatology network temperature database. Bull Amer Meteor Soc, 1997, 78(12):2837-2849. doi: 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2 [20] 李新, 程国栋, 卢玲.空间内插方法比较.地球科学进展, 2000, 15(3):260-265. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003003.htm [21] 张仁铎.空间变异理论及应用.北京:科学出版社, 2005. [22] 张兰生, 方修琦.中国气温变化的区域分布规律.北京师范大学学报 (自然科学版), 1988(3):78-85. [23] 宋连春.近40年我国气温时空变化特征.应用气象学报, 1994, 5(1):119-124. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940120&flag=1 [24] 陈隆勋, 邵永宁, 张清芬, 等.近四十年我国气候变化的初步分析.应用气象学报, 1991, 2(2):164-173. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910215&flag=1 [25] 陈隆勋, 朱文琴.中国近45年来气候变化的研究.气象学报, 1998, 56(3):257-271. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB803.000.htm [26] 任国玉, 郭军, 徐铭志, 等.近50年中国地面气候变化基本特征.气象学报, 2005, 63(6):942-955. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506010.htm [27] 沙万英, 邵雪梅, 黄玫.20世纪80年代以来中国气候变暖及其对自然区域界线的影响.中国科学, 2002, 32(4):317-326. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204006.htm [28] 魏凤英, 曹洪兴, 王丽萍.20世纪80~90年代我国气候增暖进程的统计事实.应用气象学报, 2003, 14(1):79-86. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030109&flag=1 [29] 曾昭美, 严中伟.本世纪全球增暖的显著性分析.应用气象学报, 1999, 10(增刊):23-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.003.htm [30] 王绍武, 叶瑾琳, 龚道溢.近百年中国气温序列的建立.应用气象学报, 1998, 9(4):392-401. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980459&flag=1