夏季青藏高原热源低频振荡对我国东部降水的影响
Effect of Summer Heat Source Low-frequency Oscillation over the Tibetan Plateau on Precipitation in Eastern China
-
摘要: 利用NCEP/NCAR逐日再分析资料及长江中下游降水资料, 诊断和分析了长江中下游地区旱年1978年、涝年1999年青藏高原东部大气热源与降水季节内振荡的关系, 并着重讨论了青藏高原低频热力过程的经、纬向传播, 结果表明:1978年夏季青藏高原东部大气热源存在10~20 d周期为主的振荡, 交叉谱分析表明:青藏高原东部热源与长江中下游降水在10~20 d频段存在显著相关, 且青藏高原激发的周期为10~20 d的低频振荡热源在纬向上呈现出驻波形式; 1999年夏季青藏高原东部热源存在30~60 d周期为主的振荡, 热源与长江中下游降水在30~60 d频段存在显著相关。Abstract: The relation between the atmospheric heat source (AHS) over the eastern Tibetan Plateau (TP) and rainfall intraseasonal oscillation is investigated using daily NCEP/NCAR reanalysis and observed rainfall data of the middle and lower reaches of the Yangtze River during the year 1978 of drought and 1999 of flood. The propagation of low-frequency oscillation AHS over the eastern TP are studied too. The results show that the 10—20 day oscillations have important contributions to AHS over the eastern TP in summer of 1978, and 30—60 day oscillations play an important role in AHS over the eastern TP in summer of 1999. AHS over eastern TP takes on a form of intraseasonal oscillation not only in 1978 but also in 1999. And a remarkable correlation is found between AHS over the eastern TP and rainfall in the Yangtze River valley at intraseasonal oscillation period of time by cross spectrum analysis. In addition, based on 10—20 days and 30—60 days filter curves of AHS over the eastern TP in summer of 1978 and 1999, low-frequency AHS at period of 10—20 days over the eastern TP appears standing wave in zonal direction in 1978, but low-frequency AHS at period of 30—60 days over the eastern TP moves eastward to middle and lower reaches of the Yangtze River.
-
图 2 根据热源的10~20 d滤波曲线进行8个位相合成的1978年低频波场 (第1位相:谷; 第5位相:峰)
Fig. 2 Composite evolution patterns of the 10-20 days filtered atmospheric heat source responding to the 8 phases of band-pass filtered atmospheric heat source in 1978 (phase 1 shows the minimum period of rainfall and phase 5 shows the maximum period)
图 3 根据热源的30~60 d滤波曲线进行8个位相合成的1999年低频波场 (第1位相:谷; 第5位相:峰)
Fig. 3 Composite evolution patterns of the 30-60 days filtered atmospheric heat source responding to 8 phases of band-pass filtered atmospheric heat source in 1999 (phase 1 shows the minimum period of rainfall and phase 5 shows the maximum period)
表 1 1978年夏季高原东部热源与长江中下游降水的交叉谱 (通过95%信度检验)
Table 1 Cross spectrum analysis between atmospheric heat source over eastern Tibetan Plateau and rainfall in the Yangtze River valley in summer of 1978 (95% confidence level is showed)
表 2 1999年夏季高原东部热源与长江中下游降水交叉谱分析 (通过95%的信度检验)
Table 2 Cross spectrum analysis between atmospheric heat source over eastern Tibetan Plateau and rainfall over the Yangtze River valley in summer of 1999 (95% confidence level is showed)
表 3 1978年夏季高原东部热源与长江中下游热源交叉谱分析 (通过95%信度检验)
Table 3 Cross spectrum analysis between atmospheric heat source over eastern Tibetan Plateau and the Yangtze River valley in summer of 1978 (95% confidence level is showed)
表 4 1999年夏季高原东部热源与长江中下游热源交叉谱分析 (通过95%信度检验)
Table 4 Cross spectrum analysis between atmospheric heat source over eastern Tibetan Plateau and the Yangtze River valley in summer of 1999 (95% confidence level is showed)
-
[1] Chen L X, Xie A. Westward propagating low-frequency oscillation and its teleconnection in the eastern hemisphere. Acta Meteorological Sinica, 1988, (2):300-312. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXW198803002.htm [2] 孙淑清.盛夏亚洲上空副热带高压活动的波谱分析、台风及热带环流的研究.北京:科学出版社, 1979:68-76. [3] 刘富明, 林海.大气低频振荡与长江上游大范围降雨关系.四川气象, 1989, (9):1-8. [4] 刘富明, 林海.西太平洋地区低频振荡及其同副高、台风的关系的探讨.气象学报, 1990, 48(3):303-317. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199003005.htm [5] Huang R H, Lu L. Numerical simulation of the relation ship between the anomaly of the subtropical high over East Asia and the convective activities in the westly tropical Pacific. Adv Atm Sci, 1989, 6:202-214. doi: 10.1007/BF02658016 [6] 吴国雄, 丑纪范, 刘屹岷, 等.副热带高压形成和变异的动力学问题.北京:科学出版社, 2002:90-160. [7] Chen L X, Zhu C W, Wang W, et al. Analysis of the characteristics of 30—60 day low-frequency oscillation over Asia during 1998 SCSMEX. Adv Atmos Sci, 2001, 18:623-638. doi: 10.1007/s00376-001-0050-0 [8] 章基嘉, 孙国武, 陈葆德.青藏高原大气低频变化的研究.北京:气象出版社, 1991:60-90. [9] 孙国武, 陈葆德.黄河上游丰水年和枯水年大气低频的振荡特征.气象, 1986, 5:23-24. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198603003.htm [10] 朱乾根, 徐国强.1998年夏季青藏高原及其邻近地区多时间尺度低频振荡降水活动的传播特征∥第二次青藏高原大气科学试验理论研究进展 (三).北京:气象出版社, 2000:43-51. [11] 谢安, 叶谦, 陈隆勋.青藏高原及其附近地区大气周期振荡在OLR资料上的反映.气象学报, 1989, 47(3):272-286. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198903002.htm [12] 何金海, 杨松.东亚地区低频振荡的经向传播及中纬度的低频波动.气象学报, 1992, 50(2):190-198. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199202005.htm [13] Chen L X, Schmidt F, Li W. Characteristics of the atmospheric heat sources and moisture sinks over the Qinghai-Tibetan Plateau during the Second TIPEX of summer 1998 and its impact on surrounding monsoon. Meteorology and Atmospheric Physics, 2003, 83(1-2):1-18. doi: 10.1007/s00703-002-0546-x [14] 董敏, 朱文妹, 徐祥德.青藏高原地表热通量变化及其对初夏东亚大气环流的影响.应用气象学报, 2001, 12(4):458-468. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010460&flag=1 [15] 柏晶瑜, 徐祥德, 周玉淑, 等.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究.应用气象学报, 2003, 14(3): 363-368. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030344&flag=1 [16] 葛旭阳, 陶立英, 朱永褆, 等.青藏高原热力状况异常与长江中下游地区梅雨关系的相关分析及数值试验.应用气象学报, 2001, 12(2):159-166. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010222&flag=1 [17] 刘式适, 柏晶瑜, 徐祥德, 等.青藏高原大地形的动力、热力作用与低频振荡.应用气象学报, 2000, 11(3):312-321. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000347&flag=1 [18] 江宁波, 罗会邦.亚洲季风区大气热源和水汽汇的季节内变化 (Ⅰ)———大气热源的季节内变化.热带气象学报, 1993, 9 (4):299-307. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199304001.htm [19] 江宁波, 罗会邦.亚洲季风区大气热源和水汽汇的季节内变化 (Ⅱ)———水汽汇的季节内变化.热带气象学报, 1994, 10 (1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX401.000.htm [20] 何金海, Murakami T, Nakazawa T.1979年夏季亚洲季风区域40—50天周期振荡的环流及水汽输送场变化.南京气象学院学报, 1984, 2(2):163-175. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198402003.htm [21] Lau K M, Yang G J, Shen S H. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon Wea Rev, 1988, 116(1):18-37. doi: 10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2 [22] Chen T C, Yen M C, Weng S P. Interaction between the summer monsoon in East Asia and the South China Sea:Intraseasonal monsoon modes. J Atmos Sci, 2000, 57:1373-1392. doi: 10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2 [23] 琚建华, 钱诚, 曹杰.东亚夏季风的季节内振荡研究.大气科学, 2005, 29(2):187-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200502002.htm [24] Yanai M, Li C. Mechanism of heating and the bounday layer over the Tibetan Plateau. Mon Wea Rev, 1992, 122(21): 305-323. [25] Torrence C, Compo G P. A practical guide to wavelet analysis. Bull Amer Meteor Soc, 1998, 79 (11):61-78. http://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf [26] 魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 2007:82-87.