利用无人机探测台风海鸥的气象要素特征
Characteristics of Meteorological Elements During Typhoon Kalmaegi Observed by Unmanned Aerial Vehicle
-
摘要: 2008年7月18日对0807号台风海鸥进行了无人机探测工作。该次探测为中国大陆首次利用无人机直接向台风中心方向飞行, 进行台风基本气象要素的探测。无人机对台风海鸥进行了近4 h的飞行探测, 飞行高度为500 m, 距台风中心最近距离为108.4 km, 成功获得了探测时段内的温度、气压、相对湿度、风向、风速及海拔高度等基本气象要素数据。结果表明:气压和海拔高度呈显著性相关 (r=-0.98);距离台风中心越近, 气压越低, 风速越大, 温度也呈明显下降趋势; 地面至300 m的平均温度梯度为-1.02 ℃/100 m, 300~500 m的平均温度梯度为-0.46 ℃/100 m, 近地面的温度随高度变化较大; 探测时段内, 风速最大值为22.3 m/s, 平均值为15.1 m/s。Abstract: China is one of the countries where meteorological disasters happen frequently, and typhoon is one ofthe most serious disasters.Meteorological Observation Center of China Meteorological Administrationhave carried out typhoon observation experiment by unmanned aerial vehicle (UAV) in 2008.For the first time, UAV is used to observe typhoon Kalmaegion 18 July 2008, and it is a successfulfield campaign.The UAV sends back data and lands safely after the observation.The UAV flies directlytowards the typhon center and observes the temperature, relative humidity, pressure, wind direction andwind speed with onboard meteorological sensors.It takes almost 4 hours to observe the meteorological elements, the cruising altitude of UAV is 500 m and the nearest distance to typhoon center is about108.4 km.The meteorological elements such as air temperature, pressure, relative humidity, wind direction, wind speed and altitude are received successfully during the observation period.The UAV fliesthrough precipitation area, upwind area, strong convection and such serious flight environment.Thus aquasi-real-time observation system with the capability of flight observing, data collecting, processing anddistributing is established.The observation data reflects some basic characteristics of typhoon, showing that pressure and altitudehave good correlation (r=-0.98). Closer to the typhoon center, pressure is lower and wind speed ishigher.Gradients of temperature is about -1.02 ℃/100 m from ground to 300 m and about -0.46 ℃/100 m from 300 m to 500 m.The temperature varies largely with the height in the near surface layer, which shows that the ground surface has much influence on the temperature.During the observation period, the maximum wind velocity is about 22.3 m · s -1 with the average of about 15.1 m · s -1.Closer to the typhoon center, higher the relative humidity is.When the UAV arrives at the destination and returns, therelative humidity is 100%and after that it decreases.It can be concluded that when the relative humidity ishigh, UAV flies in the precipitation area.It also shows the waterproof performance of UAV is good, which ensures it fly normally in the precipitation weather.
-
表 1 基本性能指标
Table 1 Basic performance indexes
表 2 气象要素静态测试指标
Table 2 Static test indexes of meteorological elements
-
[1] Jorgensen D P.Mesoscale and convective-scale characteristics of mature hurricanes.Part Ⅰ :General observations by research aircraft.J Atmos Sci, 1984, 41:1267 -1285. doi: 10.1175/1520-0469(1984)041%3C1268%3AMACSCO%3E2.0.CO%3B2 [2] http:∥www.eol.ucar.edu/rtf/facilities/dropsonde. [3] Franklin J L, Black M, Valde K.GPS dropwindsonde wind profiles in hurricanes and their operational implications.Wea Forecasting, 2003, 18 :32 -44. doi: 10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2 [4] Rogers R, Coauthors.The intensity forecasting experiment:A NOAA multiyear field program for improving tropical cyclone intensity forecasts.Bull Amer Meteor Soc, 2006, 87:1523 -1537. doi: 10.1175/BAMS-87-11-1523 [5] http:∥www.noaanews.noaa.gov. [6] Holland G J. Tropical cyclone reconnaissance using aerosonde UAV.WMO Bull, 2002, 51: 235-246. [7] May P T, Holland G J.The role of potential vorticity generation in tropical cyclone rainbands.J Atmos Sci, 1999, 56: 1224-1228. doi: 10.1175/1520-0469(1999)056<1224:TROPVG>2.0.CO;2 [8] Powell M D.Boundary-layer structure and dynamics in outer hurricane rainbands.Part Ⅱ :Downdraft modification and mixed layer recovery.Mon Wea Rev, 1990, 118: 918-938. doi: 10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2 [9] http:∥www.aerosonde.com. [10] Moteki Qoosaku, Ryuichi Shirooka, Kunio Yoneyama, et al. The Impact of the Assimilation of Dropsonde Observations during PALAU2005 in ALERA.SOLA, 2007, 3:97-100. doi: 10.2151/sola.2007-025 [11] Lin P H, Lee C S, Yen T C, et al.Flying into Typhoon Haiyan with UAV Aerosonde.Preprints, 12th Symp on Meteorological Observations and Instrumentation.Long Beach, CA, Amer Meteor Soc, 2003: 1-5. [12] Lin Pohsiung, Lee Chengshang.The eyewall-penetration reconnaissance observation of typhoon Longwang (2005) with Unmanned Aerial Vehicle, Aerosonde.J Atmos Ocean Technol, 10.1175/2007jtecha914.1, 2008:15-25. doi: 10.1175/2007jtecha914.1 [13] 马舒庆, 汪改, 潘毅.微型无人驾驶飞机探空初步试验研究.南京气象学院学报, 1997, 20(2): 171-177. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.004.htm [14] 马舒庆, 汪改, 潘毅, 等.微型探空飞机解析测风方法.大气科学, 1999, 23(3): 377-384. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199903015.htm [15] 马舒庆, 郑国光, 汪改, 等.一种人工影响天气微型无人驾驶飞机及初步试验.地球科学进展, 2006, 21(5):545-550. http://www.cqvip.com/QK/94287X/200605/21857674.html