基于海气通量算法的海上蒸发波导诊断模型
Oceanic Evaporation Duct Diagnosis Model Based on Air-sea Flux Algorithm
-
摘要: 蒸发波导是海上普遍存在的海洋天气现象, 也是导致海上电磁波异常传播的重要因素, 严重影响了海上雷达、通信及电子设备的有效应用。而TOGA COARE (海洋-大气耦合响应试验) 通量算法为蒸发波导的精确诊断提供了条件, 因此, 该文建立了基于海气通量算法的海上蒸发波导诊断模型, 并利用福建海域铁塔观测资料以及海上雷达探测试验数据与美国业务运转的Paulus-Jeske诊断模型对比, 结果表明:通量蒸发波导诊断模型的各项对比结果均优于Paulus-Jeske模型。
-
关键词:
- 蒸发波导;
- TOGA COARE;
- 通量算法;
- 相似理论
Abstract: Evaporation duct is a prevailing weather phenomenon that occurs on the sea, which is also the most important factor of anomalous propagation of electromagnetic wave. It influences the application of radar, correspondence and electronic equipment seriously. But there are some problems in the evaporation duct diagnosis model. For example, the diagnostic precision of many empirical functions summarized in land trials, is not validated in oceanic environment; the practicability of Monin-Obukhov Similarity Theory (MOST) in very low wind speed is limited; the seawater salinity has influences on water vapor press. TOGA COA RE flux algorithm supplies so me conditions for the precise diagnosis of Oceanic evaporation duct. Utilizing COARE 3.0 flux algorithm by Fairall and "gustiness" by Godfrey et al, the traditional MOST is appropriate to low wind speed condition, and evaporation duct model is established based on the flux algorithm (called Flux Evaporation Duct Model) combined with the precise atmospheric refractive index formula. Using the tower actual observation data in Ping tan Island during May, the Flux Evaporation Duct Model is compared with US Navy's Paulus-Jeske Model on evaporation duct height (EDH) and the profile of modified refractivity M. Gene rally speaking, the EDH calculated by the Flux Evaporation Duct Model is close to the actual data, superior to Paulus-Jeske Model obviously.But the two models' precision in the unstable cases is better than the stable cases. M-profiles computed by the Flux Model tally with the iron tower fitting results, the profile curvature computed by PJ Model is better, but there is obvious deviation for M value in the low altitude. In the comparison, it's found the EDH diagnosis accuracy does not mean the M profiles tally with the actual situation. Finally, using the marine radar sounding trial data in 2002, it's further verified the result that the Flux Model is able to provide good duct environment parameters for marine electro magnetic propagation computation and increase the precision of the radar sounding performance. -
图 6 不稳定条件下铁塔(a)、模型(b)的M廓线
Fig. 6 As in Fig. 5, but for the unstable cases
-
[1] 姚展予, 赵柏林, 李万彪, 等.大气波导特征分析及其对电磁波传播的影响.气象学报, 2000, 58(5): 605-616. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200005008.htm [2] Hitney H V, Richter J H. Integrated Refractive Effects Prediction System (IRE PS).Naval Engineers Journal, 1976, 88(2): 257-262 doi: 10.1111/nej.1976.88.issue-2 [3] Paulus R A.Practical Application of the IREPSE vaporation Duct Model.Naval Ocean System Center Technical Report, 1984. [4] Liu W T, Katsaros K B, Businger J A.Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface.J Atmos Sci, 1979, 36 : 1722-1735. doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2 [5] Babin S M. A New Model of the Oceanic Evaporation Duct and Its Comparison with Current Models.University of Maryland, 1996. [6] Newton D A. COAMPS Modeled Surface Layer Refractivity in the Roughness and Evaporation Duct Experiment 2001. Naval Postgraduate School, 2003. https://www.researchgate.net/publication/235124091_COAMPS_Modeled_Surface_Layer_Refractivity_in_the_Roughness_and_Evaporation_Duct_Experiment_2001?_sg=eSLkLsfYBdOXplPKv8nwEL9_V3GcMlve6XUHvTrg5uXbaooXSv9-Pxoqk22tWTCwGtV9CA04618TPSzavUKnQg [7] 刘成果, 黄际英, 江成荫, 等.用伪折射率和相似理论计算海上蒸发波导剖面.电子学报, 2001, 29(7): 970-972. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200107030.htm [8] 戴福山.大气波导及其军事应用.北京:解放军出版社, 2002. [9] Fairall C W, Bradley E F, Ed son J B, et al.Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Response Experiment. J Geophys Res, 1996: 3747-3764. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.6689 [10] Fairall C W, Hare J E, Edson J B, et al.Measurement and parameterization of the air-sea gas transfer.Bound-Layer Meteor, 2000, 96:63-105. [11] Fairall C W, Bradley E F.Bulk parameterization of air-sea fluxes:Updates and verification for the COARE algorithm. J Climate, 2003. 2: 571-592 http://d.wanfangdata.com.cn/NSTLQK_10.1175-1520-0442(2003)016-0571-BPOASF-2.0.CO;2.aspx [12] 阎俊岳.中国邻海海-气热量、水汽通量计算和分析.应用气象学报, 1999, 10(1): 9-19. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990141&flag=1 [13] 姚华栋, 任雪娟, 马开玉. 1998年南海季风试验期间海-气通量的估算.应用气象学报, 2003, 14(1): 87-92. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030110&flag=1 [14] 姚华栋, 李骥, 丁一汇. TOGA-COARE IOP海表通量估算.气象学报, 1996, 54(6): 693-708. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB606.005.htm [15] Geernaert G L, Plan W J.Surface Waves and Fluxes.Boston : Kluwer Academic Publishers, 1990. [16] Godfrey J S, Beljaars A C M. On the turbulent fluxes of buoyancy, heat, and moisture at the air-sea interface at low wind speeds. J Geophys Res, 1991, 96: 22043-22048. doi: 10.1029/91JC02015 [17] Bean B R, Dutton E J.Radio Meteorology.New York:Dover Publications, 1968. [18] 黄小毛, 张永刚, 唐海川, 等.大气波导对雷达异常探测影响的评估与试验分析.电子学报, 2006, 34(4): 722-725. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200604029.htm