全国电线结冰厚度分布及等级预报模型
Characteristic Analysis of Ice Accumulation on Transmission Lines and Simulation Based on ANN Model over China
-
摘要: 利用1961-2008年全国电线结冰及相关气象要素台站观测资料,分析电线结冰厚度的空间分布特征,并建立利用前期冰冻日数,前1天日最低气温、相对湿度、风速和降水量预报电线结冰厚度等级的3层人工神经网络BP模型。结果表明:电线结冰厚度最大值在10mm以上的地区,在北方主要位于东北东南部、内蒙古东北部、华北中部以及甘肃南部等地,在南方主要位于安徽东南部、江西北部、湖南南部、湖北西部、重庆南部、贵州中部以及四川东部等地,呈东-西向带状分布。近48年来,安徽黄山和江西庐山覆冰厚度历年极大值和覆冰日数均呈增长趋势;四川峨眉山、甘肃西峰镇的历年极大值和覆冰日数均呈减小趋势。建立的人工神经网络BP模型能在一定程度上预报结冰厚度等级, 模型对近10年的回报结果显示, 准确率为81.3%。Abstract: An extreme frozen ice and snow disaster brought severe losses in early 2008 to China. A large number of overhead transmission lines are destroyed seriously during this event. It is critical to investig ate the characteristics of ice accumulation and develop appropriate models to estimate transmission line icing in China.Using the observation data of ice accumulation on transmission lines and meteorological data collected from over 600 meteorological stations of China, the characteristics of ice accumulation are analyzed and an ANN model for predicting ice accumulation depth grades is developed. The results mainly include four aspects. First, the area with ice accumulation extremes over 10 mm is mainly located in the southeastern part of Northeastern China, the northeastern part of Inner Mongolia, the middle part of North China, the southern part of Gansu Province and a east-west zone to the south of the Yangtze River. Second, there are 50 stations (1/6 of totalice accumulation observation stations) expe riencing extreme ice accumulation in 2008. Third, trends for yearly maximum of ice accumulation depth and ice accumulation days increase for Huangshan station in Anhui Province and Lushan station in Jiangx iProvince, while decrease for Emeishan station in Sichuan Province and Xifengzhen station in Gansu Province. Finally, an ANN model based on three layer BP network is developed to predict ice accumulation thickness grades. It is used to predict ice accumulation thickness grades in recent 10 years, and the accuracy rate is 81.3%comparing with obser-vation. For 7.5% of the samples, prediction result is one grade higher than observation and for 11.3% it is one to four grades lower. The ANN model underestimates extreme high values seriously, which suggests it needs improving.Besides, the data from weather observation stations might be different from the field surroundings. Nevertheless, in the areas with high risks of freezing hazard, the model can provide information for electricity suppliers to optimize the design of reliable equipments and to take preventive actions avoiding serious damage by ice-snow frozen weather.
-
图 4 不同结冰厚度等级下气象要素组合的关系
(黄点、绿点、蓝点和红点分别表示结冰厚度为0mm, 0~20 mm, 20~40 mm和40mm 以上的样本) (a)最低气温与相对湿度, (b)最低气温与风速, (c)最低气温与降水量, (d)相对湿度与风速
Fig. 4 Relationship between pairs of meteorological parameters controlling ice accretion
(yellow, green, blue and red dots represent samples with ice accretion depth of 0 mm, 0-20 mm, 20-40 mm and >40 mm, respectively) (a)daily minimum tempera ture vs daily relative humidity, (b)daily minimum temperature vs daily wind speed, (c)daily minimum tempera ture vs daily rainfall amount, (d)daily relative humidity vs daily wind speed
表 1 全国电线结冰站点数据情况统计
Table 1 Statist ics about the stations with ice accretion observation over China
表 2 代表站点历年覆冰厚度极大值及覆冰日数长期变化趋势
Table 2 Trend for yearly maximal ice accumulation depth and ice accumulation days
表 3 冰冻厚度与厚度观测当天及前 1 ~ 3 天气象要素的偏相关系数
Table 3 Partial correlation coeff icients between ice accumulation depth and meteorological parameters controlling ice accretion for 4 days including the ice-accretion-depth-observed day and 1-3 days before that
表 4 ANN 建模评估---预报等级的误差
Table 4 Assessment of ANN model by comparing prediction grades with observation grades
-
[1] 国家气候中心.2008年初我国南方低温雨雪冰冻灾害及气候分析.北京:气象出版社, 2008:20. [2] 王遵娅, 张强, 陈裕, 等.2008年初我国低温雨雪冰冻灾害的气候特征.气候变化研究进展, 2008, 4(2):63 -67. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200802004.htm [3] Poots G. Ice and Snow Accretion on Structures. Taunton: Research Studies Press, 1996. http://ci.nii.ac.jp/ncid/BA28032517 [4] Mak konen L. Estimation in tensity of atmospheric ice accretion on stationary structures. J Appl Meteor, 1981, 20:595-600. doi: 10.1175/1520-0450(1981)020<0595:EIOAIA>2.0.CO;2 [5] Mak konen L. Modeling of ice accretion on wires. J Climate Appl Meteor, 1984, 23:929 -939. doi: 10.1175/1520-0450%281984%29023<0929%3AMOIAOW>2.0.CO%3B2 [6] Sundin E, M ak konen L. Ice load son a lattice tower estimated by weather station data. J Appl Meteor, 1998, 37:523 -529. http://cat.inist.fr/?aModele=afficheN&cpsidt=2233947 [7] Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures. Phil Trans (Series A), 2000, 358:2913 -2939. http://rsta.royalsocietypublishing.org/content/358/1776/2913 [8] 罗宁, 文继芬, 赵彩, 等.导线积冰的云雾特征观测研究.应用气象学报, 2008, 19(1):91-95. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080114&flag=1 [9] Lenhard R W. An indirect method for estimating the weight of glaze on wires. Bull Amer Met Soc, 1995, 36:1 -5. [10] Makkonen L. Modeling Power Line Icing in Freezing Precipi-tation.7th International Workshop on Atmospheric Icing of Stractures, Chicoutimi, Canada, 1996:195 -200. http://www.sciencedirect.com/science/article/pii/S0169809597000562 [11] McComber P, Draez J, Laflamme J. Icing rate estimation of atmospheric cable icing. IntJ Off shore Polar Eng, 1995, 5(2):75 -92. https://www.onepetro.org/journal-paper/ISOPE-95-05-1-043 [12] Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines. IEEE Trans Power Deliv, 2005, 20(2):1080-1087. doi: 10.1109/TPWRD.2004.838518 [13] Ohta H, Saitoh K, Kanemaru K, et al. Application of Disaster Warning System Due to Snow Accretion on Power Lines Using Neural Networks.7th International Works hop on At-mospheric Icing of Structures, Chicoutimi, Canada, 1996:l49-154. [14] McComber P, De Lafontaine J, Laflamme J. A Neural System to Estimate Transmission Line Icing. 8th International Workshop on Atmospheric Icing of Stractures, Rey kjavik, Iceland, 1998:101 -106. [15] Larouche E, Rouat J, Bouchard G, et al. Exploration of Static and Time Dependent Neural Network Technique for the Predic-tion of Ice Accretion on Overhead Line Conductors.9th Interna-tional Workshop on Atmospheric Icing of Structures. Chester, United Kingdom, Session 2, 2000: 8. [16] Maralbashi -Zamini S.Developing Neural Network Models toPredict Ice Accretion Type and Rate on Overhead Transmission Lines, 2007 DOI:10.1522/030012635 [17] 唐熠.一次雨淞天气与一次飘雪天气过程形势异同分析.广西气象, 2003, 24(3):21 -22;45. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200303007.htm [18] 吕胜辉, 王积国, 邱菊.天津机场地区冻雨天气分析.气象科技, 2004, 32(6):456 -460. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200406014.htm [19] 谭冠日.电线积冰若干小气候特征的探讨.气象学报, 1982, 40(1):13 -23. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198201001.htm [20] 王守礼.云南高海拔地区电线覆冰问题研究.昆明:云南科技出版社, 1993. [21] 蒋兴良, 孙才新, 顾乐观, 等.三峡地区导线覆冰的特性及雾凇覆冰模型.重庆大学学报 (自然科学版), 1998, (2): 18 -21. http://www.cnki.com.cn/Article/CJFDTOTAL-FIVE802.002.htm [22] 刘和云, 周迪, 付俊萍, 等.导线雨淞覆冰预测简单模型的研究.中国电机工程学报, 2001, 21(4):45 -48. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200104009.htm [23] 苑吉河, 蒋兴良, 易辉, 等.输电线路导线覆冰的国内外研究现状.高电压技术, 2004, 30(1) :8 -11. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200401002.htm [24] 张国庆, 张加昆, 祁栋林, 等.青海东部电线积冰的初步观测分析.应用气象学报, 2006, 17(4): 508-510. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060488&flag=1 [25] 吴素良, 蔡新玲, 何晓嫒, 等.陕西省电线积冰特征.应用气象学报, 2009, 20(2):247 -251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090215&flag=1 [26] 西南电力设计院.电力工程气象勘测技术规程.北京:中国电力出版社, 2002. [27] 李双成, 吴绍洪, 戴尔阜.生态系统响应气候变化脆弱性的人工神经网络模型评价.生态学报, 2005, (3): 621-626. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200503031.htm [28] 龙立宏, 胡毅, 李景禄, 等.输电线路冰害事故统计分析及防治措施研究.电力设备, 2006, 7(12):26 -28. http://www.cnki.com.cn/Article/CJFDTOTAL-DLSB200612008.htm