华西秋雨天气过程中GPS遥感水汽总量演变特征
The Evolution Features of Precipitable Water Vapor Derived from Ground-based GPS During Autumn Rain Weather Process in West China
-
摘要: 利用成都地区地基GPS观测网2007年9-11月的观测数据, 结合自动气象站资料计算出30 min间隔GPS遥感的大气水汽总量(GPS-PWV)。将成都地区秋季降雨分为阵性降雨和连续性降雨(秋绵雨), 结合其他气象要素资料, 分析了GPS-PWV变化与成都秋雨之间的关系。结果表明:高值的水汽总量是产生降水的必要条件; 不同的降水过程, GPS-PWV的变化幅度、极值水平和持续时间存在明显差异。水汽的增长、上升运动的增强和温度的减少是造成阵性降水的主要原因; 而秋绵雨过程中, 水汽的增长和地面露点温度差与降水过程有较好的对应关系。Abstract: Based on the principle of deriving precipitable water vapor with ground-based GPS, the estimates of total zenith delay are calculated using ZTD data from the ground-based GPS network in Chengdu Plain during the period of September to November 2007. Precipitable water vapor (PWV) derived from GPS are obtained at 30-minute interval combining meteorological data from automatic weather stations. The autumn rain is classified as showery rain and continuous precipitation in Chengdu Plain, and the relationship between GPS-PWV and autumn rain is analyzed. It shows that precipitation always happens in high value phase of water vapor, so the high precipitable water vapor is necessary for rain in most cases. Precipitation happen when the PWV anomaly is positive, and the PWV anomaly is always higher than 1 when a rainstorm occurs. The variation range of showery in autumn is large. The GPS-PWV always increases 12 hours before the precipitation. When GPS-PWV is higher than the base value of the month or acutely increases in the adjacent time, a shower is likely to occur. High GPS-PWV level and weak updrafts just lead to small rain. But the increasing of precipitable water with strong ascending motion and the decreasing of temperature always causes shower. During continuous precipitation in autumn in Chengdu Plain, the accu-mulation of water vapor is very important, strong precipitation often happens when water vapor rises once again. If the precipitable water vapor maintains the high level, it may rain within 12 hours. If the water vapor falls to the base value of the month then rise to above that within 12 hours, it indicates the beginning of another phase of precipitation. GPS-PWV variation range, extremum level and duration are different in different rain process. These results may be referential for applying precipiatable production derived from ground-based GPS network in precipitation forecast.
-
Key words:
- autumn rain;
- West China;
- ground-based GPS;
- precipitable water vapor;
- precipitation
-
表 1 成都地区5个站点2007年9-11月降水时数和GPS水汽总量的关系
Table 1 The distribution of monthly precipitation hour and precipitable water vapor during July-September of 2007 in Chengdu Plain
表 2 阵性降水过程中GPS-PWV的变化特征
Table 2 The variation features of GPS-PWV during showery precipitation
-
[1] 李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的实验研究.应用气象学报, 2001, 12(1):61-68. [2] 袁野, 王成章, 蒋年冲, 等.不同云天条件下水汽含量特征及其变化分析.气象科学, 2005, 31(4):394-398. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200504008.htm [3] 刘旭春, 王艳秋, 张正禄.利用GPS技术遥感哈尔滨地区大气可降水量的分析.测绘通报, 2006, 14(4):10-16. http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB200604006.htm [4] 陈小雷, 景华, 仝美然, 等.地基GPS遥测大气可降水量在天气分析诊断中的应用.气象, 2007, 33(6):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200706002.htm [5] 曹云昌, 方宗义, 夏青.GPS遥感的大气可降水量与局地降水关系的初步分析.应用气象学报, 2005, 16(1):54-59. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20050107&flag=1 [6] 姚建群, 丁金彩, 王坚捍, 等.用GPS可降水量资料对一次大-暴雨过程的分析.气象, 2005, 31(4):48-52. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200504011.htm [7] Manabu Kanda.GPS Meteorology:Ground-based and Space-Borne Application∥Proceedings of GPS Meteorology.Tsukuba, Japan, 2003:3-12. [8] 李国平, 黄丁发.GPS遥感区域大气水汽总量研究回顾与展望.气象科学, 2004, 32(4):201-205. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200404000.htm [9] 何平, 徐宝祥, 胡新康, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1 [10] 杨红梅, 何平, 徐宝祥.用GPS资料分析华南暴雨的水汽特征.气象, 2002, 28(5):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200205003.htm [11] 李国平, 黄丁发, 刘碧全.成都地区地基GPS观测网遥感大气可降水量的处分试验.武汉大学学报(信息科学版), 2006, 31(12):1086-1089. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200612012.htm [12] 谷晓平, 王长耀, 蒋国华.地基GPS遥感大气水汽含量及在气象上的应用.气象科学, 2005, 25(5):543-550. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200505013.htm [13] 梁丰, 李成才, 王迎春, 等.应用区域地基全球定位系统观测分析北京地区大气总水汽量.大气科学, 2003, 27(2):236-243. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200302009.htm [14] Saastamoinen J.Atmospheric correction for the troposphereand stratosphere in radio ranging of satellites.The Use ofArtificial Satellites for Geodesy Monogr, 1972, 15:247-251. doi: 10.1029/GM015p0247/summary [15] Davis J L, Herring T A, Shaprio I I, et al.Geodesy by radiointer-ferometry:Effects of atmospheric modeling errors ones timates of baseline length.Radio Sci, 1985, 20:1593-1607. doi: 10.1029/RS020i006p01593 [16] 郭洁, 李国平, 黄丁发.基于40年探空资料的川渝地区对流层加权平均温度及其局地建模.武汉大学学报(信息科学版), 2008, 33(增刊):43-46.