留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度大气数值预报的技术进展

彭新东 李兴良

彭新东, 李兴良. 多尺度大气数值预报的技术进展. 应用气象学报, 2010, 21(2): 129-138..
引用本文: 彭新东, 李兴良. 多尺度大气数值预报的技术进展. 应用气象学报, 2010, 21(2): 129-138.
Peng Xindong, Li Xingliang. Advances in the numerical method and technology of multi scale numerical prediction. J Appl Meteor Sci, 2010, 21(2): 129-138.
Citation: Peng Xindong, Li Xingliang. Advances in the numerical method and technology of multi scale numerical prediction. J Appl Meteor Sci, 2010, 21(2): 129-138.

多尺度大气数值预报的技术进展

资助项目: 

中国气象科学研究院基本科研业务费 2008R001

和灾害天气国家重点实验室基本科研业务费共同资助 2008LASWZI05

国家青年科学基金项目 40805045

国家自然科学基金项目 40875065

Advances in the Numerical Method and Technology of Multi scale Numerical Prediction

  • 摘要: 随着计算机和计算理论的发展,数值模式正在向全球化、精细化发展,以适应多尺度、多目的应用的要求,从而模糊了大气环流模式和中尺度数值模式的界限,其主要手段就是改进模式动力框架、离散化手段、计算方法、物理过程的普适性。在实际应用中如何提高模式的多尺度计算性能则是问题关键。该文从模式球面坐标系、网格构造、离散化方法的动力特性、垂直坐标和地形处理以及对物理过程的要求出发,探讨分析多尺度大气数值模式的特点:全球/区域可选、非静力近似、具有良好的频散关系和详细的物理过程,垂直高度坐标和“剪切”地形对多尺度通用模式的改良十分重要。除上述特点外,模式所采用的计算方法也应该最大限度地描述大气动力过程特性,采用高性能计算方案有利于多尺度预报。结合当前多尺度预报的国际研究热点和开发前沿,探讨我国新一代多尺度数值预报系统GRAPES的进一步发展及改进方向。
  • 图  1  Z网格 (a)、R网格 (b) 和M网格 (c) 示意图

    Fig. 1  SchematicplotsoftheZgrid (a), Rgrid (b) and M grid (c)

    图  2  大气模式中4种较为常用的准均匀网格系统

    (a) 递减网格,(b) 正二十面体网格,(c) 立方体网格,(d) 阴阳网格

    Fig. 2  The fourquasi-uniform spherical grids used for global atmospheric models

    (a) reducedgrid, (b) icosahydrongrid, (c) cubedgrid, (d) Yin-Yanggrid

    图  3  自动双向嵌套计算

    Fig. 3  Automatictwo-waynestingtechnology

    图  4  CP网格配置 (a) 和LZ网格配置 (b) 示意图

    Fig. 4  IllustrationsofvariablesonCPgrid (a) andLZgrid (b)

    图  5  网格阶梯地形

    (a) 和切削网格地形 (b) 示意图 (虚线为实际地形高度,阴影为模式地形高度)

    Fig. 5  Illustrations of step model topography (a) and shaved-cell topography (b)

    (dashed line shows true terrain, shaded area shows modal terrain)

    图  6  二维 (a) 和准三维 (b) 云分辨模式进行超级参数化示意图

    (小标尺表示云可分辨网格)

    Fig. 6  Two-dimensional (a) and quasi-three-dimensional (b) super parameterization with cloud-resolving model with in acoarse cell

    (the scale with a cell shows cloud resolving grid size)

  • [1] Richardson L F,Weather Prediction by Numerical Process,Lon-don:Cambridge University Press,1922.
    [2] Charney J G,Fiortoft R,von Neumann J,Numerical inte-gration of the barotropic vorticity equation,Tellus,1950,2:237-254. doi:  10.1111/tus.1950.2.issue-4
    [3] 丑纪范,谢志辉,王式功,建立6-15天数值天气预报业务系统的另类途径,军事气象水文,2006,12:4-9.
    [4] 丑纪范,天气数值预报中使用过去资料的问题,中国科学a辑,1974,17(6):635-644.
    [5] 邱崇践,丑纪范,改进数值天气预报的一个新途径,中国科学b辑,1987,17(8):903-910.
    [6] Ohfuchi W,Nakamura H,Yoshioka M,10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulater-Preliminary outcomes of AFES(AGCM for the Earth Simulator),J Earth Simulator,2004,1:5-31.
    [7] 张人禾,沈学顺,中国国家级新一代业务数值预报系统GRAPES的发展,科学通报,2008,53(20):2393-2395. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820001.htm
    [8] 陈德辉,沈学顺.新-代数值预报系统GRAPES的研究进展,应用气象学报,2006,17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [9] 胡江林,沈学顺,张红亮,GRAPES模式动力框架的长期积分特征,应用气象学报,2007,18(3):276-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070349&flag=1
    [10] Arakawa A,Lamb V R,Computational design of the basic dynamical processes of the UCLA general circulation model,Methods in Computational Physics,1977,17:173-265.
    [11] Randall D A,Geostrophic adjustment and the finite-difference shallow-water equations,Monthly Weather Review,1994,122:1371-1377. doi:  10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2
    [12] McGregor J L,Geostrophic adjustment foe reversibly stag-gered grids,Monthly Weather Review,2005,133:1119-1128. doi:  10.1175/MWR2908.1
    [13] Xiao F,Peng X,Shen X,A finite-volume grid using multi-moments for geostrophic adjustment,Monthly Weather Review,2006,134:2515-2526. doi:  10.1175/MWR3197.1
    [14] Williamson D L,The evolution of dynamical cores for global atmospheric models,Journal of the Meteorological Society of Japan,2007,85B:241-269. doi:  10.2151/jmsj.85B.241
    [15] Peng X,Xiao F,Takahashi K,Conservative constraint for a quasi-uniform overset grid on the sphere,Quarterly Journal of the Royal Meteorological Society,2006,132:979-996. doi:  10.1256/qj.05.18
    [16] Chaney J G,Phillips N A,Numerical integration of the qua-si-geostrophic equations for barotropic and simple baroclinic flows,Journal of Meteorology,1953,10:71-99. doi:  10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
    [17] Lorenz E N,Energy and numerical weather prediction,Tel-lus,1960,12:364-373.
    [18] Tokioka T,Some consideration on vertical differencing,Journal of the Meteorological Society of Japan,1978,56:89-111.
    [19] Hollingsworth A,A Spurious Mode in"Lorenz" Arrangement of Φ and T Which Does not Exist in the"Charney-Phillips"Ar-rangement,ECMWF Tech Memo,1995,211:1-12.
    [20] Arakawa A,Konor C S,Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid σp vertical conrdinates,Monthly Weather Review,1996.
    [21] Arakawa A,Moorthi S Baroclinic instability in vertically discrete system,Journal of the Atmospheric Sciences,1996,124:511-528.
    [22] Arakawa A,Suarez M J,Vertical differencing of the primi-tive equations in Sigma coordinates,Monthly Weather Review,1983,111:34-45. doi:  10.1175/1520-0493(1983)111<0034:VDOTPE>2.0.CO;2
    [23] 陈德辉,杨学胜,张红亮,多尺度非静力通用模式框架的设计策略,应用气象学报,2003,14(4):452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1
    [24] 薛纪善,陈德辉,数值预报系统GRAPES的科学设计与应用,北京:科学出版社,2008:1-383.
    [25] Thompson J F,Warsi Z,Mastin C,Numerical Grid Genera-tion:Foundations and Applications,North-Holland:Elsevier Science Publishing Company,1985.
    [26] Mesinger F,Janjic Z,Nickovic S,The step-mountain coordinate:Model description and performance for cases al-pine lee cyciogenesis and foe a case of an Appalachian redevel-opment,Monthly Weather Review,1988,116:1493-1518. doi:  10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2
    [27] Gallus W,Klemp J,Behavior of flow over step orography,Monthly Weather Review,2000,128:1153-1164. doi:  10.1175/1520-0493(2000)128<1153:BOFOSO>2.0.CO;2
    [28] Yamazaki H,Satomura T,Vertically combined shaved cell method in a z-coordinate nonhydrostatic atmospheric model,Atmospheric Science Letters,2008,DOI: 10.1002/asl.187.
    [29] Saito K,Ishida J,Aranami K,Nonhydrostatic atmos-pheric models and operational development at JMA,J Meteo-ro Soc Japan,2007,85B:271-304.
    [30] Erbes G,A,semi-Lagrangian method of Characteristics for the shallow-water equations,Monthly Weather Review,1993,121:3443-3452. doi:  10.1175/1520-0493(1993)121<3443:ASLMOC>2.0.CO;2
    [31] Ogata Y,Yabe T,Multi-dimensional semi-Lagrangian char-acteristic approach to the shallow water equations by CIP method,International J Comput Eng Sci,2004,5:699-730. doi:  10.1142/S1465876304002642
    [32] Peng X,Chang Y,Li X,Application of the character-istic CIP method to shallow water model on sphere,Adv At-mos Sci,2010,27,doi: 10.1007/s00376-009-9148-6.
    [33] Yabe T,Tanaka R,Nakamura T,An exactly conser-vative semi-Lagrangian scheme(CIP-CSL)in one dimension,Mon Wea Rea,2001,129:332-344. doi:  10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
    [34] 陈峰峰,王光辉,沈学顺,Cascade插值方法在GRAPES 模式中的应用,应用气象学报,2009,20(2):164-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090205&flag=1
    [35] Randall D,Khairoutdinov M,Arakawa A,Breaking the cloud parameterization deadlock,Bull Amer Metero Soc,2003,84:1547-1564. doi:  10.1175/BAMS-84-11-1547
  • 加载中
图(6)
计量
  • 摘要浏览量:  4279
  • HTML全文浏览量:  948
  • PDF下载量:  4444
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-29
  • 修回日期:  2010-02-03
  • 刊出日期:  2010-04-30

目录

    /

    返回文章
    返回