[1]
|
Richardson L F,Weather Prediction by Numerical Process,Lon-don:Cambridge University Press,1922.
|
[2]
|
Charney J G,Fiortoft R,von Neumann J,Numerical inte-gration of the barotropic vorticity equation,Tellus,1950,2:237-254. doi: 10.1111/tus.1950.2.issue-4
|
[3]
|
丑纪范,谢志辉,王式功,建立6-15天数值天气预报业务系统的另类途径,军事气象水文,2006,12:4-9.
|
[4]
|
丑纪范,天气数值预报中使用过去资料的问题,中国科学a辑,1974,17(6):635-644.
|
[5]
|
邱崇践,丑纪范,改进数值天气预报的一个新途径,中国科学b辑,1987,17(8):903-910.
|
[6]
|
Ohfuchi W,Nakamura H,Yoshioka M,10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulater-Preliminary outcomes of AFES(AGCM for the Earth Simulator),J Earth Simulator,2004,1:5-31.
|
[7]
|
张人禾,沈学顺,中国国家级新一代业务数值预报系统GRAPES的发展,科学通报,2008,53(20):2393-2395. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820001.htm
|
[8]
|
陈德辉,沈学顺.新-代数值预报系统GRAPES的研究进展,应用气象学报,2006,17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
|
[9]
|
胡江林,沈学顺,张红亮,GRAPES模式动力框架的长期积分特征,应用气象学报,2007,18(3):276-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070349&flag=1
|
[10]
|
Arakawa A,Lamb V R,Computational design of the basic dynamical processes of the UCLA general circulation model,Methods in Computational Physics,1977,17:173-265.
|
[11]
|
Randall D A,Geostrophic adjustment and the finite-difference shallow-water equations,Monthly Weather Review,1994,122:1371-1377. doi: 10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2
|
[12]
|
McGregor J L,Geostrophic adjustment foe reversibly stag-gered grids,Monthly Weather Review,2005,133:1119-1128. doi: 10.1175/MWR2908.1
|
[13]
|
Xiao F,Peng X,Shen X,A finite-volume grid using multi-moments for geostrophic adjustment,Monthly Weather Review,2006,134:2515-2526. doi: 10.1175/MWR3197.1
|
[14]
|
Williamson D L,The evolution of dynamical cores for global atmospheric models,Journal of the Meteorological Society of Japan,2007,85B:241-269. doi: 10.2151/jmsj.85B.241
|
[15]
|
Peng X,Xiao F,Takahashi K,Conservative constraint for a quasi-uniform overset grid on the sphere,Quarterly Journal of the Royal Meteorological Society,2006,132:979-996. doi: 10.1256/qj.05.18
|
[16]
|
Chaney J G,Phillips N A,Numerical integration of the qua-si-geostrophic equations for barotropic and simple baroclinic flows,Journal of Meteorology,1953,10:71-99. doi: 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
|
[17]
|
Lorenz E N,Energy and numerical weather prediction,Tel-lus,1960,12:364-373.
|
[18]
|
Tokioka T,Some consideration on vertical differencing,Journal of the Meteorological Society of Japan,1978,56:89-111.
|
[19]
|
Hollingsworth A,A Spurious Mode in"Lorenz" Arrangement of Φ and T Which Does not Exist in the"Charney-Phillips"Ar-rangement,ECMWF Tech Memo,1995,211:1-12.
|
[20]
|
Arakawa A,Konor C S,Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid σp vertical conrdinates,Monthly Weather Review,1996.
|
[21]
|
Arakawa A,Moorthi S Baroclinic instability in vertically discrete system,Journal of the Atmospheric Sciences,1996,124:511-528.
|
[22]
|
Arakawa A,Suarez M J,Vertical differencing of the primi-tive equations in Sigma coordinates,Monthly Weather Review,1983,111:34-45. doi: 10.1175/1520-0493(1983)111<0034:VDOTPE>2.0.CO;2
|
[23]
|
陈德辉,杨学胜,张红亮,多尺度非静力通用模式框架的设计策略,应用气象学报,2003,14(4):452-461. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030456&flag=1
|
[24]
|
薛纪善,陈德辉,数值预报系统GRAPES的科学设计与应用,北京:科学出版社,2008:1-383.
|
[25]
|
Thompson J F,Warsi Z,Mastin C,Numerical Grid Genera-tion:Foundations and Applications,North-Holland:Elsevier Science Publishing Company,1985.
|
[26]
|
Mesinger F,Janjic Z,Nickovic S,The step-mountain coordinate:Model description and performance for cases al-pine lee cyciogenesis and foe a case of an Appalachian redevel-opment,Monthly Weather Review,1988,116:1493-1518. doi: 10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2
|
[27]
|
Gallus W,Klemp J,Behavior of flow over step orography,Monthly Weather Review,2000,128:1153-1164. doi: 10.1175/1520-0493(2000)128<1153:BOFOSO>2.0.CO;2
|
[28]
|
Yamazaki H,Satomura T,Vertically combined shaved cell method in a z-coordinate nonhydrostatic atmospheric model,Atmospheric Science Letters,2008,DOI: 10.1002/asl.187.
|
[29]
|
Saito K,Ishida J,Aranami K,Nonhydrostatic atmos-pheric models and operational development at JMA,J Meteo-ro Soc Japan,2007,85B:271-304.
|
[30]
|
Erbes G,A,semi-Lagrangian method of Characteristics for the shallow-water equations,Monthly Weather Review,1993,121:3443-3452. doi: 10.1175/1520-0493(1993)121<3443:ASLMOC>2.0.CO;2
|
[31]
|
Ogata Y,Yabe T,Multi-dimensional semi-Lagrangian char-acteristic approach to the shallow water equations by CIP method,International J Comput Eng Sci,2004,5:699-730. doi: 10.1142/S1465876304002642
|
[32]
|
Peng X,Chang Y,Li X,Application of the character-istic CIP method to shallow water model on sphere,Adv At-mos Sci,2010,27,doi: 10.1007/s00376-009-9148-6.
|
[33]
|
Yabe T,Tanaka R,Nakamura T,An exactly conser-vative semi-Lagrangian scheme(CIP-CSL)in one dimension,Mon Wea Rea,2001,129:332-344. doi: 10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
|
[34]
|
陈峰峰,王光辉,沈学顺,Cascade插值方法在GRAPES 模式中的应用,应用气象学报,2009,20(2):164-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090205&flag=1
|
[35]
|
Randall D,Khairoutdinov M,Arakawa A,Breaking the cloud parameterization deadlock,Bull Amer Metero Soc,2003,84:1547-1564. doi: 10.1175/BAMS-84-11-1547
|