空间点过程理论在极端气候事件中的应用研究
Cluster Extreme Events Based on Point Process Theory
-
摘要: 该文定义了12种极端温度事件和6种极端降水事件,将基于空间点过程理论的k阶最近邻距离丛集点提取算法应用于极端温度和极端降水事件的研究,给出了极端温度和极端降水事件区域群发性站点的检测流程;采用多年平均的疏密差异比R和有效率η两个指标,对所定义的各种极端气候事件的区域群发性进行了有效性检验,结果表明:k阶最近邻距离丛集点提取算法适用于极端气候事件的区域群发性研究,并进一步阐明了极端气候事件区域群发性的物理含义。Abstract: Extreme weather and climate events have attracted more attention in the last few years due to the often large loss of human life and exponentially increasing costs coping with them. The assessment of extreme climate events has found that extreme events are showing the characteristic of clustering. Many natural phenomena manifest themselves as spatial point processes which produce numerous events in space, such as extreme events. For clarification, the occurrence of a phenomenon located at a single point is defined as an event in contrast to a simple geometric point. Some events assemble in a restricted region while other events are dispersed. Regarding extreme events as spatial point processes and the cluster events as the clustered points, a method is developed to delineate the cluster events from a region which is called k-th order nearest distance spatial point method. By combining spatial point theory with cluster events, the algorithm is validated with a new method which consists of four major steps. The first step is to define different kinds of extreme events including 12 kinds of extreme temperature events and 6 kinds of extreme precipitation events. The second step is to calculate the statistically weights of every station based on the frequency and strength. The third step is to give the spatial distributions of all the stations that extreme events happens and the last step is to pick out the clustered events combining the spatial theory. Based on this method, extreme events research in eastern and middle areas of China have been accomplished, including extreme temperature events and extreme precipitation events. Results of k-th order nearest distance, the material definitions of weights and the distribution charts are given, which can detect cluster extreme events effectively. Based on the given charts and two efficient indexes (one is called average of ratio which is represented by R, the other is called efficiency represented by η), all kinds of extreme climate events are tested to validate the method, finding out that the algorithm is fit for cluster extreme climate events, especially for heavier extreme events. The method performs better on temperature extreme events than precipitation extreme events. So it's concluded that cluster extreme events can be delineated not only by qualitative research, but also by quantitative research, which offers a new idea in extreme events researches.
-
Key words:
- extreme events;
- cluster;
- k-th order nearest distance;
- cluster point
-
图 2 2000年夏季高温事件的空间分布
(a) 群发提取结果图 (“+”表示发生极端高温事件的站点, “●”表示提取出的群发性站点), (b) 权重分布图 (数字“1” “5”代表所在位置上站点的权重)
Fig. 2 Stations over China about temperature extremein 2000
(a) cluster distribution ("+"represent the station soccurring temperature extreme, "●"represent the cluster stations occurring temperature extreme), (b) power distribution (number "1"—"5" represent station spower)
表 1 极端温度事件的定义
Table 1 Different defintions of temparture extreme
表 2 极端降水事件的定义
Table 2 Different defintions of precipitation extreme
-
[1] 柳艳香, 王凌, 赵振国, 等.2006年中国夏季降水预测回顾.气候变化研究进展, 2007, 3(4):243-245. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200704014.htm [2] 陶诗言, 卫捷, 孙建华, 赵思雄, 等.2008/2009年秋冬季我国东部严重干旱分析.气象, 2009, 35(4):3-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200904002.htm [3] 丁一汇, 王遵娅, 宋亚芳, 等.中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系.气象学报, 2008, 66(5):808-825. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200805014.htm [4] 符娇兰, 林祥, 钱维宏.中国夏季分级雨日的时空特征.热带气象学报, 2008, 24(4):367-372. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804010.htm [5] 秦爱民, 钱维宏, 蔡亲波, 等.1960~2000年中国不同季节的气温分区及趋势.气象科学, 2005, 25(4):338-345. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200504001.htm [6] 张勇, 曹丽娟, 许吟隆, 等.未来我国极端温度事件变化情景分析.应用气象学报, 2008, 19(6):655-660. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080603&flag=1 [7] 支蓉, 龚志强.利用幂律尾指数的中国降水突变检测与归因.物理学报, 2008, 57(7):4629-4633. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200807110.htm [8] 龚志强, 封国林.中国近1000年旱涝的持续性特征研究.物理学报, 2008, 57(6):3920-3931. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200806103.htm [9] 杨萍, 刘伟东, 王启光, 等.近40年我国极端温度变化趋势和季节特征.应用气象学报, 2010, 21(1):29-36. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100104&flag=1 [10] 封国林, 杨杰, 万仕全, 等.温度破纪录事件预测理论研究.气象学报, 2009, 67(1):61-74. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901008.htm [11] 陈波, 史瑞琴, 陈正洪.近45年华中地区不同级别强降水事件变化趋势.应用气象学报, 2010, 21(1):47-54. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100106&flag=1 [12] 章大全, 杨杰, 王启光, 等.中国近50年气候破纪录温度事件发生概率分析.物理学报, 2009, 58(6):4354-4361. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200906116.htm [13] 王遵娅, 丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报, 2008, 19(6):710-715. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080610&flag=1 [14] 侯威, 杨萍, 封国林.中国极端干旱事件的年代际变化及其成因.物理学报, 2008, 57(6):3932-3940. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200806104.htm [15] 熊开国, 封国林, 王启光, 等.近46年来中国温度破纪录事件的时空分布特征分析.物理学报, 2009, 58(11):8107-8115. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200911112.htm [16] 杨萍. 近四十年中国极端温度和极端降水事件的群发性研究. 兰州: 兰州大学, 2009: 8-12. [17] Byers S D, Raftery A E.Nearest-neighbor clutter removal for estimating features in spatial point processes.Journal of the American Statistical Association, 1998, 93:577-584. doi: 10.1080/01621459.1998.10473711 [18] 裴韬, 周成虎, 杨明, 等.混合二维泊松过程的分解算法及其在提取地震丛集模式中的应用.地震学报, 2004, 26(1):53-61. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200401006.htm [19] Pei T, Zhu A X, Zhou C H, et al. A new approach to the nearest-neighbour method to discover cluster features in overlaid spatial point processes.Inter-national Journal of Geographical Information Science, 2006, 19:153-168. http://solim.geography.wisc.edu/axing/publication/018_IJGIS2006_published.pdf [20] Pei T, Zhu A X, Zhou C H, et al.Delineation of support domain of feature in the presence of noise.Computers & Geosiences, 2007, 33:952-965. https://www.researchgate.net/publication/222301202_Delineation_of_support_domain_of_feature_in_the_presence_of_noise [21] 王启光, 侯威, 郑志海, 等.东亚区域大气长程相关性.物理学报, 2009, 58(9):6640-6650. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200909121.htm [22] 封国林, 董文杰, 龚志强, 等.观测数据非线性时空分布理论和方法.北京:气象出版社, 2006:1-227. [23] 杨萍, 侯威, 支蓉.利用空间点过程提取丛集点算法的适用性研究.物理学报, 2009, 58(3):2097-2105. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200903114.htm [24] CLIVAR, GCOS, WMO.Indices and Indicators for Changes in Climate Extreme.Asheville NC USA, 1997:3-6. [25] 翟盘茂, 潘晓华.中国北方近50年温度和降水极端事件变化研究.地理学报, 2003, 58(增刊):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB2003S1000.htm [26] 李吉顺, 王昂生.陈家田, 90年代局地气候变化与长江流域水旱灾害.中国减火, 2000, 10(3):29-31.