EMD在广西季节降水预报中的应用
Application of EMD to Seasonal Precipitation Forecast in Guangxi
-
摘要: 气候系统是一种耗散的、具有多个不稳定源的非线性、非平稳系统。该文利用支持向量机 (SVM) 算法在处理非线性问题中的优越性和经验模态分解 (EMD) 算法在处理非平稳信号中的优势,采用将EMD与SVM相结合的短期气候预测方法, 并应用到广西季节降水预报中。选取广西88个气象观测站1957—2005年6—8月逐年降水量的距平百分率序列作为试验数据,通过EMD算法将标准化处理后的距平百分率序列分解成多个本征模态函数 (IMF) 分量和一个趋势分量, 在分解中针对EMD算法存在的端点极值问题选择两种方法分别进行处理,对比得出极值延拓法效果更好。对每个分量构建不同的SVM模型进行预测,并通过重构形成最后的预测结果。试验中采用不经EMD处理的反向传播(BP)神经网络和SVM算法进行对比验证,结果表明:相对于直接预测方法,该文提出的方案均方误差最小,能够较为准确地反映出降水序列未来几年的变化趋势,具有更高的预测精度和较好的推广前景。
-
关键词:
- 经验模态分解(EMD);
- 支持向量机(SVM);
- 短期气候预测;
- 降水预报;
- 时间序列
Abstract: The climate system is a high order nonlinear system with dissipation. In recent years, the BP neural network algorithm and the Support Vector Machine (SVM) algorithm are applied widely in the short range climate forecast for its superiority in handling nonlinear time series problem. Besides, the climatic time series are non stationary, so the signal needs processing to improve its predication result. The Empirical Mode Decomposition (EMD) algorithm introduced by Huang is used to stabilize the climatic time series. Combined with the SVM algorithm, it's used for short range climate forecast and applied to the seasonal precipitation forecast in Guangxi. The EMD algorithm decomposes non stationary signal into several Intrinsic Mode Functions (IMF) components and a remainder with stationary. EMD algorithm doesn't provide a good solution for the endpoints extremes problem, and the extreme extending method is adopted as the endpoints continuation method for short range climate forecast. Anomaly percentage of accumulated precipitation data are analyzed, which are observed at 88 meteorological observatories in Guangxi from June to August during 1957—2005. Using the EMD algorithm, the time series being standardized are decomposed into four IMF components and a remainder; then a SVM model is built for each component, and the forecasts are composed to the final forecast result. For comparison, BP neural network algorithm and SVM algorithm are adopted to forecast respectively without the EMD algorithm. Analysis on the predicted values and errors show that, without being processed with EMD, errors of the SVM algorithm are smaller than that of the BP neural network algorithm. So it proves that the generalization capability of BP is weaker than SVM when processing the small sample size problem, whereas SVM algorithm follows the structural risk minimization, and can coincidence the change trend better in condition of finite samples. It shows that the results of the EMD method combined with the SVM algorithm are more accurate. It illustrates that the EMD algorithm can reflect the regularity in different time scales of time series via decomposing into a collection of components with stationarity, which is more suitable for predicting with machine learning methods. The superiority of this scheme makes it widely applicable in precipitation forecast. -
表 1 运用3种方案进行预测的相对误差
Table 1 The relative error of three schemes for forecast
-
[1] 张迎春, 肖冬荣, 赵远东.基于时间序列神经网络的气象预测研究.武汉理工大学学报 (交通科学与工程版), 2003, 27(2):237-240. http://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200302030.htm [2] 金龙, 吴建生, 林开平, 等.基于遗传算法的神经网络短期气候预测模型.高原气象, 2005, 24(6):981-987. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200506018.htm [3] 陈永义, 俞小鼎, 高学浩, 等.处理非线性分类和回归问题的-种新方法 (I)--支持向量机方法简介.应用气象学报, 2004, 15(3):345-354. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040344&flag=1 [4] 冯汉中, 陈永义.处理非线性分类和回归问题的一种新方法 (Ⅱ)--支持向量机方法在天气预报中的应用.应用气象学报, 2004, 15(3):355-365. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040345&flag=1 [5] 冯汉中, 陈永义, 成永勤, 等.双流机场低能见度天气预报方法研究.应用气象学报, 2006, 17(1):94-99. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060116&flag=1 [6] 燕东渭, 孙田文, 杨艳, 等.支持向量数据描述在西北暴雨预报中的应用试验.应用气象学报, 2007, 18(5):676-681. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200705103&flag=1 [7] 刘科峰, 张韧, 洪梅, 等.基于最小二乘支持向量机的副热带高压预测模型.应用气象学报, 2009, 20(3):354-359. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090312&flag=1 [8] 林振山, 汪曙光, .近四百年北半球气温变化的分析:EMD方法的应用.热带气象学报, 2004, 24(1):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200401009.htm [9] Huang N E, Zhcng Shen.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Times Series Aanalysis.London, 1998:903-995. http://www.doc88.com/p-0911668718780.html [10] 黄伟, 杨志刚, 丁志宏.基于EMD的官厅水库天然年径流量变化多时间尺度分析.水资源与水工程学报, 2008, 19(1):49-52. http://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200801015.htm [11] 李楠, 曾兴雯.基于EMD和神经网络的时间序列预测.西安邮电学院学报, 2007, 12(1):51-54. http://www.cnki.com.cn/Article/CJFDTOTAL-XAYD200701015.htm [12] 林瑞霖, 周平.基于EMD和神经网络的气阀机构故障诊断研究.海军工程大学学报, 2008, 20(2):48-51. http://www.cnki.com.cn/Article/CJFDTOTAL-HJGX200802010.htm [13] 钟佑明, 金涛, 秦树人.希尔伯特-黄变换中的-种新包络线算法.数据采集与处理, 2005, 20(1):13-14. http://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ200501002.htm [14] 黄大吉, 赵进平, 苏纪兰.希尔伯特-黄变换的端点延拓.海洋学报, 2003, 25(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200301000.htm [15] Zhao J P, Huang D J.Mirror extending and circular spline function for empirical mode decomposition method.Journal of ZhejiangUniversity, 2001, 2(3):247-252. https://www.researchgate.net/publication/225660443_Mirror_extending_and_circular_spline_function_for_empirical_mode_decomposition_method [16] 朱金龙, 邱晓晖.正交多项式拟合在EMD算法端点问题中的应用.计算机工程与应用, 2006, 23:72-74. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200623020.htm [17] 邓拥军, 王伟, 钱成春, 等.EMD方法及Hilbert变换中边界问题的处理.科学通报, 2001, 46(3):257-263. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200103017.htm [18] 于伟凯.EMD时频分析方法的理论研究与应用.秦皇岛:燕山大学, 2006. [19] 杜熊禹.用于数据挖掘的支持向量机算法研究.成都:电子科技大学, 2007. [20] Suykens J A K, Lukas L, Vandewalle J.Least squares suppert vecter machine classifiers.Neural Processing Letters, 1999, 9(3):293-300. doi: 10.1023/A:1018628609742 [21] 董春曦, 饶鲜, 杨绍全, 等.支持向量机参数选择方法研究.系统工程与电子技术, 2004, 26(8):1117-1120. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200408029.htm [22] Han Jiawei, Micheline Kamber.数据挖掘概念与技术.范明, 孟小峰, 译北京:机械工业出版社, 2008:46.