三峡库区夏季旱涝变化特征及成因
Variation Characteristics and Causes of the Flood and Drought in the Three Gorges Area in Summer
-
摘要: 利用1951—2008年三峡库区范围内10个国家基本站的夏季降水资料,通过Z指数分析了三峡库区夏季旱涝的变化特征,确定出6个严重涝年(1954,1956,1980,1982,1983年和1998年)和6个严重旱年(1959,1966,1972,1976,2001年和2006年)。结合NCEP/NCAR的再分析资料以及NOAA的OLR资料,对严重旱涝年份的大气环流形势进行合成分析。结果表明:三峡库区夏季旱涝变化具有较好的一致性,1979年经历了由旱到涝的年代际转变;2001年后,三峡库区进入偏旱阶段。三峡库区夏季严重涝年和旱年环流形势存在显著差异,当100 hPa南亚高压异常强大,500 hPa高度距平场欧亚高纬度地区从自西向东呈"-+-"距平波列分布,乌拉尔山和鄂霍次克海地区有持续性阻塞高压发展,西太平洋暖池对流偏弱,西太平洋副热带高压位置易偏南,三峡库区以南的西南水汽输送增强,使得三峡库区的水汽辐合增强,这种环流形势配合有利于三峡库区洪涝的发生,严重旱年则相反。Abstract: The Three Gorges area is located in the East Asian monsoon region. Under the influence of the monsoon activity, the precipitation of the Three Gorges area mainly concentrates on the period from June to August with relatively high variability, which is prone to the occurrence of the flood and drought disaster. The flood and drought of the Three Gorges area not only has a great impact on the lives of local residents and social activities, but also directly determines the operation and power generation efficiency of the Three Gorges Hydropower complex Project. As a result, the study of the variation characteristics and the formation of the flood and drought of the Three Gorges area is of great significance, providing a scientific decision base to prevent the disaster of flood and drought.
The temporal evolution of the drought and flood of the Three Gorges area in summer and its circulation patterns in the anomalous years are analyzed, obtaining a consistent result. The droughts occur frequently in the Three Gorges area in summer from 1951 to 1978. Following, there is a decadal abrupt change from the droughts to the floods in 1979. Then the floods are popular in the Three Gorges area from 1979 to 2000. Severe droughts take place frequently in the Three Gorges area after 2001. The circulation patterns are obviously different between in severe flood years and in severe drought years of the Three Gorges area. As for the severe flood years of the Three Gorges area, the South Asia High strengthens in 100 hPa, and there is a "-+-" wave train from the west to the east of the Eurasia high latitude area in 500 hPa height anomaly, which reflects that there are continuing block highs in the Okhotsk and Ural regions. Furthermore, the weaker convections over the Western Pacific Warm Pool make the West Pacific Subtropical High to shift southward. In addition, there is strengthening southwest water vapor transport from the Three Gorges area to the Indo China peninsula, which enhances the water vapor convergence in the Three Gorges area. These circulation patterns are advantageous to the genesis of the floods in the Three Gorges area. -
图 3 三峡库区夏季严重涝年和旱年同期100 hPa高度距平合成场和差值场 (单位:gpm)
(阴影区为通过0.1显著性水平检验; 矩形框为三峡库区)(a) 严重涝年, (b) 严重旱年, (c) 严重涝年与旱年的差值场
Fig. 3 The composite anomaly fields of 100 hPa height in summer of the Three Gorges area (unit:gpm)
(shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years
图 4 三峡库区夏季严重涝年和旱年同期500 hPa高度距平合成场和差值场 (单位:gpm)
(阴影区为通过0.1显著性水平检验; 矩形框为三峡库区)(a) 严重涝年, (b) 严重旱年, (c) 严重涝年与旱年的差值场
Fig. 4 The composite fields of 500 hPa height anomaly in summer of the Three Gorges area (unit:gpm)
(shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years
图 5 三峡库区夏季严重涝年和旱年同期整层水汽通量距平流场的合成场和差值场
(阴影区为通过0.1显著性水平检验; 矩形框为三峡库区) (a) 严重涝年, (b) 严重旱年, (c) 严重涝年与旱年的差值场
Fig. 5 The composite anomaly fields of the water vapour flux of total layers stream vector in summer of the Three Gorges area
(shade dareas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severe flood years, (b) severe drought years, (c) difference between severe flood and drought years
图 6 三峡库区夏季严重涝年和旱年同期整层水汽通量散度距平合成场和差值场 (单位:10-6kg·m-2·s-1)
(阴影区为通过0.1显著性水平检验; 矩形框为三峡库区) (a) 严重涝年, (b) 严重旱年, (c) 严重涝年与旱年的差值场
Fig. 6 The composite anomaly fields of the water vapour flux divergence of total layers in summer of the Three Gorges area (unit:10-6 kg·m-2·s-1)
(shaded areas denote passing the test of 0.1 level; the square frame is the Three Gorges area) (a) severef lood years, (b) severe drought years, (c) difference between severef lood and drought years
图 7 三峡库区夏季旱涝指数与同期东亚地区OLR场的相关分布 (阴影区为通过0.05显著性水平检验; 矩形框为三峡库区)
Fig. 7 The correlation distribution between the flood, drought indexes of the Three Gorges area in summer and the OLR over East Asian in summer (shaded areas denote passing the test of 0.05 level; the square frame is the Three Gorges area)
表 1 旱涝等级划分
Table 1 Grades of drought and flood
表 2 1951—2008年三峡地区10个台站夏季降水Z指数与区域平均降水Z指数之间的相关系数
Table 2 The correlations between Z index of each stationin the Three Gorges area and the mean of Z index in summer rainfall from 1951 to 2008
-
[1] 张建敏,黄朝迎,吴金栋.三峡工程建成后枯水期运行的气候风险研究.应用气象学报,2001,16(2):91-98. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010229&flag=1 [2] 王梅华,刘莉红,张强.三峡地区气候特征.气象,2005,31(7):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200507015.htm [3] 廖要明,张强,陈德亮.1961-2006年三峡库区夏季气候特征.气候变化研究进展,2007,3(6):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200706014.htm [4] 叶殿秀,邹旭恺,张强,等.长江三峡库区高温天气的气候特征分析.热带气象学报,2008,24(2):200-204. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200802013.htm [5] 叶殿秀,张强,邹旭恺.三峡库区雷暴气候变化特征分析.长江流域资源与环境,2005,14(3):381-385. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200503023.htm [6] 陈鲜艳,张强,叶殿秀,等.三峡库区局地气候变化.长江流域资源与环境,2009,18(1):47-51. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200901009.htm [7] 陈鲜艳,张强,邹旭恺,等.近几十年三峡库区主要气象灾害变化趋势.长江流域资源与环境,2009,18(3):296-300. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200903017.htm [8] 刘晓冉,杨茜,程炳岩,等.三峡库区21世纪气候变化的情景预估分折.长江流域资源与环境,2010,19(1):42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201001009.htm [9] 柏晶瑜,徐祥德,周玉淑,等.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究.应用气象学报,2003,14(3):108-113. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030344&flag=1 [10] 吴贤云,丁一汇,王琪,等.近40年长江中游地区旱涝特点分析.应用气象学报,2006,17(1):19-28. [11] 王遵娅,丁一汇.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报,2008,19(6):72-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080610&flag=1 [12] 王跃男,陈隆勋,何金海,等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报,2009,20(4):37-45. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090405&flag=1 [13] 鞠笑生,杨贤为,陈丽娟,等.我国单站旱涝指标确定和区域洪涝级别划分的研究.应用气象学报,1997,8(1):26-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX701.003.htm [14] 幺枕生,丁裕国.气候统计.北京:气象出版社,2000:161-180. [15] 胡娅敏,丁-汇.2000年以来江淮梅雨带北移的可能成因分析.气象,2009,35(12):37-43. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200912006.htm [16] 司东,丁一汇,柳艳菊.中国梅雨雨带年代际尺度上的北移及其原因.科学通报,2010,55(1):63-73. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201001016.htm [17] 刘晓冉,杨茜,程炳岩.2006年盛夏川渝严重伏旱的同期环流场和水汽场异常特征分析.气象,2009,35(5):27-34. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908002.htm [18] 黄嘉佑.气象统计分析与预报方法(第2版).北京:气象出版社,2000:21. [19] 钱永甫,张琼,张学洪.南亚高压与我国盛夏气候异常.南京大学学报(自然科学),2002,38(3):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200203004.htm [20] 李崇银.气候动力学引论.北京:气象出版社,2000:514-516. [21] Wang Y.Effects of blocking anticyclones in Eurasia in the rainy season(meiyu/baiu season).J Meteor Soc Japan,1992,70:929-951. http://www.oalib.com/references/19082717 [22] 张庆云,陶诗言.亚洲中高纬度环流对东亚夏季降水的影响.气象学报,1998,56(2):199-211. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB802.006.htm [23] 黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制.大气科学,1988,12(特刊):107-116. [24] Ninomiya K.Moisture balance over China and the South China Sea during the summer monsoon in 1991 in relation to the intense rainfall over China.J Meteor Soc Japan,1999,77:737-751. [25] 施小英,徐祥德,王浩,等.长江中下游地区旱涝异常的水汽输送结构特征及其变化趋势.水利学报,2008,39(5):596-603. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200805014.htm [26] 黄荣辉.引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究.大气科学,1990,14(1):108-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199001013.htm [27] 黄荣辉,孙凤英.热带西太平洋暖池的热状况及其上空的对流活动对东亚夏季气候异常的影响.大气科学,1994,18(2):141-151. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm